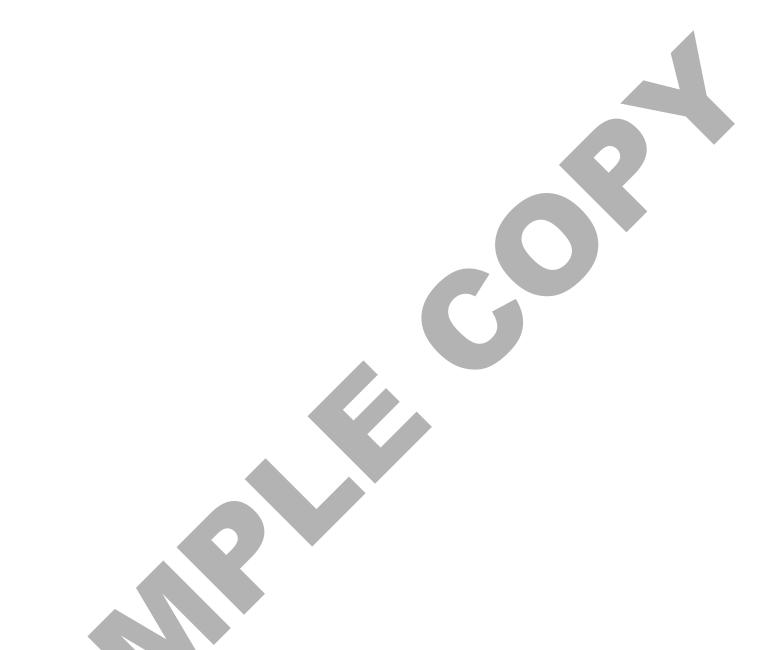
H California

Integrated Math 1


Teacher Resource Copy Masters

UNITS 1-3

Kendall Hunt

Book 1
Certified by Illustrative Mathematics®

© 2025 Illustrative Mathematics, https://www.illustrativemathematics.org/, and licensed under the Creative Commons Attribution-NonCommerical 4.0 International License (CC BY-NC 4.0), https://creativecommons.org/licenses/by-nc/4.0/.

The Illustrative Mathematics name and logo are not subject to the Creative Commons license and may not be used without the prior and express written consent of Illustrative Mathematics.

This book includes public domain images or openly licensed images that are copyrighted by their respective owners. Openly licensed images remain under the terms of their respective licenses. See the image attribution section for more information.

The Kendall Hunt name, logo, and cover artwork are not subject to the Creative Commons license and may not be used without the prior and express written consent of Kendall Hunt.

ISBN 979-8-3851-7787-5

K5_vII

20240302

1-9

Teacher Resource Copy Masters

BLACKLINE MASTERS LIST

Unit IntegratedMath1.2	Unit IntegratedMath1.2	Unit IntegratedMath1.1	Unit IntegratedMath1.1	Unit IntegratedMath1.1	Unit IntegratedMath1.1	address
Math 1 Geometry Reference Chart - Full	Blank Reference Chart	Math 1 Geometry Reference Chart - Scaffolded (TF)	Math 1 Geometry Reference Chart - Scaffolded (SF)	Math 1 Geometry Reference Chart - Full	Blank Reference Chart	title
	_				_	students per copy
no	yes	no	yes	no	yes	written on?
no	no	no	no	no	no	requires cutting?
yes	no	no	yes	yes	no	card stock recommended?
no	no	no	no	no	no	color paper recommended?
yes	no	yes	yes	yes	no	used multiple times?
no	no	no	no	no	no	used as a center material?

Unit IntegratedMath1.5	Unit IntegratedMath1.5	Unit IntegratedMath1.5	Unit IntegratedMath1.5	Unit IntegratedMath1.2	Unit IntegratedMath1.2	address
Math 1 Geometry Reference Chart - Scaffolded (TF)	Math 1 Geometry Reference Chart - Scaffolded (SF)	Math 1 Geometry Reference Chart - Full	Blank Reference Chart	Math 1 Geometry Reference Chart - Scaffolded (TF)	Math 1 Geometry Reference Chart - Scaffolded (SF)	title
	->					students per copy
no	yes	no o	yes	no	yes	written on?
no	no	no	no	no	no	requires cutting?
no	yes	yes	no	no	yes	card stock recommended?
po o	по	no	no	no	no	color paper recommended?
yes	yes	yes	no	yes	yes	used multiple times?
no	no	no	no	no	no	used as a center material?

Activity IntegratedMath1.1.19.2	Activity IntegratedMath1.1.17.2	Activity IntegratedMath1.1.15.2	Activity IntegratedMath1.1.14.2	Activity IntegratedMath1.1.11.2	Activity IntegratedMath1.1.10.2	Activity IntegratedMath1.1.9.4	Activity IntegratedMath1.1.2.1	address
Duplicate a Design Handout	How Did This Get There Cards	Self Reflection Handout	What's the Point Rotations Cards	What's the Point Reflections Cards	Blank Reference Chart	Another Layer Handout	6–12 Blank Math Community Chart	title
_	2	∞	2	2			30	students per copy
no	no	yes	no	no	yes	yes	no	written on?
no	yes	yes	yes	yes	no	no	no	requires cutting?
no	no	no	po	по	no	no	no	card stock recommended?
no	yes	no	no	no	no	no	no	color paper recommended?
no	no	no	no	no	no	no	no	used multiple times?
no	no	no	no	по	no	no	no	used as a center material?

Activity IntegratedMath1.2.6.3	Activity IntegratedMath1.2.6.2	Activity IntegratedMath1.2.5.3	Activity IntegratedMath1.2.4.2	Activity IntegratedMath1.2.3.3	Activity IntegratedMath1.2.3.2	address
What Do We Know About Isosceles Triangles Handout	Triangle Transformation Proof Template Handout	Triangle Transformation Proof Template Handout	Too Much Information Cards	Triangle Transformation Proof Template Handout	Invisible Triangles Cards	title
2	->	->	2		2	students per copy
no	no	ō	no	no	no	written on?
yes	no	ро	yes	no	yes	requires cutting?
no	no	no	no	no	no	card stock recommended?
no no	по	no	no	no	no	color paper recommended?
по	no	no	no	no	no	used multiple times?
по	по	no	no	no	no	used as a center material?

Activity IntegratedMath1.2.10.1	Activity IntegratedMath1.2.10.1	Activity IntegratedMath1.2.9.2	Activity IntegratedMath1.2.8.2	Activity IntegratedMath1.2.7.3	Activity IntegratedMath1.2.7.2	address
Brace Yourself! Long Strips	Brace Yourself! Short Strips	Triangle Transformation Proof Template Handout	Lots of Lines (Part 1) Handout	What Do We Know About Parallelograms Handout	Triangle Transformation Proof Template Handout	title
>	_>		2	30		students per copy
no	no	no	no	no	no	written on?
yes	yes	no	yes	no	no	requires cutting?
yes	yes	no	no	no	no	card stock recommended?
yes	yes	no	no	no	no	color paper recommended?
no	no	no	no	no	no	used multiple times?
no	no	no	no	no	no	used as a center material?

Activity IntegratedMath1.3.11.2	Activity IntegratedMath1.3.5.3	Activity IntegratedMath1.3.5.2	Activity IntegratedMath1.3.4.2	Activity IntegratedMath1.2.11.3	Activity IntegratedMath1.2.11.3	Activity IntegratedMath1.2.10.2	address
Describing Data Distributions Cards	Algebra 1 Unit 1 Useful Terms and Displays	Heartbeats Part 1 Handout	Matching Distributions Cards	Ambiguously Ambiguous Answer Key	Ambiguously Ambiguous Handout	More Practice Seeing Shortcuts Cards	title
N	30	2	N	0	30	N	students per copy
no	no	yes	90	no	no	no	written on?
yes	no	yes	yes	no	yes	yes	requires cutting?
no	no	no	no	no	no	no	card stock recommended?
ло	ño	no	no	no	no	по	color paper recommended?
no	yes	no	no	no	no	no	used multiple times?
по	по	no	по	по	по	по	used as a center material?

Activity IntegratedMath1.4.18.3	Activity IntegratedMath1.4.17.3	Activity IntegratedMath1.4.16.3	Activity IntegratedMath1.3.16.3	Activity IntegratedMath1.3.14.1	Activity IntegratedMath1.3.13.2	Activity IntegratedMath1.3.12.3	address
Linear Systems Cards	Sorting Systems Cards	What Comes Next Cards	Heights and Handedness Handout	Algebra 1 Unit 1 Useful Terms and Displays	African and Asian Elephants Cards	Algebra 1 Unit 1 Useful Terms and Displays	title
2	2	2	2	30	N	30	students per copy
no	no	no	OF	no	no	no	written on?
yes	yes	yes	no	no	yes	no	requires cutting?
no	no	no	no	no	no	no	card stock recommended?
no	no	no	no	no	no	no	color paper recommended?
no	no	no	no	yes	no	yes	used multiple times?
no	no	no	no	по	по	по	used as a center material?

Activity IntegratedMath1.7.6.3	Activity IntegratedMath1.6.10.2	Activity IntegratedMath1.6.7.2	Activity IntegratedMath1.6.6.3	Activity IntegratedMath1.6.5.2	Activity IntegratedMath1.6.1.3	Activity IntegratedMath1.5.9.3	Activity IntegratedMath1.5.7.2	address
Representations of Inequalities Cards	Playing Dirty Handout	Scatter Plot Fit Cards	Best Residuals Cards	Data Patterns Cards	Running to the Dentist Cards	Triangle Types Cards	Lines Cards	title
2	2	2	2	2	2	2	2	students per copy
no	no	no	no	no	no	no	no	written on?
yes	no	yes	yes	yes	yes	yes	yes	requires cutting?
no	no	no	no	no	no	no	no	card stock recommended?
70	по	no	no	no	no	no	no	color paper recommended?
no	no	no	no	no	no	no	no	used multiple times?
no	no	no	no	no	no	no	no	used as a center material?

Activity IntegratedMath1.9.9.4	Activity IntegratedMath1.9.6.3	Activity IntegratedMath1.8.18.3	Activity IntegratedMath1.8.17.2	Activity IntegratedMath1.8.13.1	Activity IntegratedMath1.8.12.4	Activity IntegratedMath1.8.10.2	Activity IntegratedMath1.7.8.3	address
Smartphone Sales Cards	Matching Descriptions to Graphs Cards	Custom Mugs Cards	Caesar Says, "Shift" Cutouts	How Good Are Your Guesses Handout	Piecing It Together Cards	Possible or Impossible Cards	Terms of A Team Cards	title
2	2	2	2		2	N	2	students per copy
no	no	no	no	yes	yes	no	no	written on?
yes	yes	yes	yes	70	yes	yes	yes	requires cutting?
no	no	no	yes	no	no	yes	no	card stock recommended?
no	no	no	no	no	no	no	no	color paper recommended?
no	no	no	no	no	no	no	no	used multiple times?
no	no	no	no	по	no	по	no	used as a center material?

Modeling Prompt: 2,000 Calories	Modeling Prompt: 2,000 Calories	Modeling Prompt: The Garden Wall	Modeling Prompt: The Garden Wall	Modeling Prompt: The Garden Wall	Modeling Prompt: Evaluating a Sample Response to a Modeling Prompt	Modeling Prompt: Evaluating a Sample Response to a Modeling Prompt	address
Modeling Rubric	Food Tables	Advice on Modeling	Modeling Rubric	Wall Diagram	Advice on Modeling	Modeling Rubric	title
_	_	_	_	1			students per copy
no	yes	no	yes	yes	no	yes	written on?
no	no	no	no	no	no	no	requires cutting?
no	no	no	no	no	no	no	card stock recommended?
no	no	no	no	no	no	no	color paper recommended?
no	no	no	no	no	no	no	used multiple times?
no	no	no	no	no	no	no	used as a center material?

Modeling Prompt: College Characteristics	Modeling Prompt: A New Town	Modeling Prompt: A New Town	Modeling Prompt: Display Your Data	Modeling Prompt: Display Your Data	Modeling Prompt: How Much Water?	Modeling Prompt: How Much Water?	Modeling Prompt: 2,000 Calories	address
Advice on Modeling	Modeling Rubric	Advice on Modeling	Modeling Rubric	Advice on Modeling	Advice on Modeling	Modeling Rubric	Advice on Modeling	title
_	_	_	_				_	students per copy
no	yes	no	yes	no	no	yes	no	written on?
no	no	no	no	no	no	no	no	requires cutting?
no	no	no	no	no	no	no	no	card stock recommended?
no	no	no	no	no	no	no	no	color paper recommended?
no	no	no	no	no	no	no	no	used multiple times?
no	no	no	no	no	no	no	по	used as a center material?

Modeling Prompt: Planning a Vacation	Modeling Prompt: Giving Bonuses	Modeling Prompt: Giving Bonuses	Modeling Prompt: A New Heating System	Modeling Prompt: A New Heating System	Modeling Prompt: College Characteristics	Modeling Prompt: College Characteristics	Modeling Prompt: College Characteristics	address
Modeling Rubric	Advice on Modeling	Modeling Rubric	Modeling Rubric	Advice on Modeling	College Data for Task Statement 2	College Data for Task Statement	Modeling Rubric	title
		_	_	_			_	students per copy
yes	no	yes	yes	Po	no	no	yes	written on?
no	no	no	no	no	no	no	no	requires cutting?
no	no	no	no	no	no	no	no	card stock recommended?
no	no	no	no	no	no	no	no	color paper recommended?
no	no	no	no	no	no	no	no	used multiple times?
no	no	no	no	no	по	по	no	used as a center material?

Modeling Prompt: Critically Examining National Debt	Modeling Prompt: Critically Examining National Debt	Modeling Prompt: Critically Examining National Debt	Modeling Prompt: Planning a Vacation	address
Advice on Modeling	Modeling Rubric	US National Debt Data	Advice on Modeling	title
_			_	students per copy
no	yes	no	no	written on?
no	no	no	no	requires cutting?
по	no	no	no	card stock recommended?
по	по	по	no	color paper recommended?
no	no	no	no	used multiple times?
no	no	no	no	used as a center material?

1

Teacher Resource Copy Masters

LESSON BLACKLINE MASTERS

date, type	statement	diagram
- 21111		
11111		
411		
-		

lesson, type	statement	diagram
U1, L10 (students write the date) assertion	A rigid transformation is a translation, reflection, rotation, or any sequence of the three. Rigid transformations take lines to lines, angles to angles of the same measure, and segments to segments of the same length.	
U1, L10 definition	Two figures are congruent if there is a sequence of translations, rotations, and reflections that takes one figure exactly onto the other. The second figure is called the image of the rigid transformation.	$\Delta EDC \cong \Delta E'D'C'$
U1, L11 definition	Reflection is a rigid transformation that takes a point to another point that is the same distance from the given line, that is on the other side of the given line, and so that the segment from the original point to the image is perpendicular to the given line. "Reflect (object) across line (name)."	Reflect A across line m.
U1, L12 definition	Translation is a rigid transformation that takes a point to another point so that the directed line segment from the original point to the image is parallel to the given line segment and has the same length and direction. "Translate (object) by the directed line segment (name or from [point] to [point])."	Translate A by the directed line segment v.
U1, L12 assertion	Parallel Postulate: Given a line <i>m</i> and a point <i>A</i> that is not on <i>m</i> , there is exactly one line that goes through <i>A</i> that is parallel to <i>m</i> .	m/ A/

lesson, type	statement	diagram
U1, L12 theorem	Translations take lines to parallel lines or to themselves.	m/ m'/ m // m'
U1, L14 definition	Rotation is a rigid transformation that takes a point to another point on the circle through the original point with the given center. The two radii, the one from the center to the original point and the one from the center to the image, make the given angle. "Rotate (object) (clockwise or counterclockwise) by (angle or angle measure) using center (point)."	Rotate P counterclockwise by a° using center C.
U2, L1 theorem	If two figures are congruent, then corresponding parts of those figures must be congruent	$ \begin{array}{c} Q \\ R \\ \hline D \\ \hline PR = \overline{DF}, \overline{QR} = \overline{EF}, \angle P = \angle D, \angle Q = \angle E, \\ \angle R = \angle F \end{array} $
U2, L3 theorem	If all pairs of corresponding sides and all pairs of corresponding angles are congruent, then the triangles must be congruent.	$\overline{AB} \cong \overline{DE}, \overline{BC} \cong \overline{EF}, \overline{AC} \cong \overline{DF}, \angle A \cong \angle D,$ $\angle B \cong \angle E, \angle C \cong \angle F$ SO $\triangle ABC \cong \triangle DEF$
U2, L5 theorem	If two segments have the same length, then they are congruent.	$A = CD, \text{ so } \overline{AB} = \overline{CD}$

lesson, type	statement	diagram
U2, L6 theorem	Side-Angle-Side Triangle Congruence Theorem: In two triangles, if two pairs of congruent corresponding sides and the pair of corresponding angles between the sides are congruent, then the two triangles are congruent.	$\overline{AB} \cong \overline{GB}, \overline{BC} \cong \overline{BC}, \angle ABC \cong \angle GBC \text{ SO}$ $\Delta ABC \cong \Delta GBC$
U2, L6 theorem	Isosceles Triangle Theorem: In an isosceles triangle, the base angles are congruent.	$A \longrightarrow B$ $\overline{AP} \cong \overline{PB}$, so $\angle A \cong \angle B$
U2, L7 theorem	Angle-Side-Angle Triangle Congruence Theorem: In two triangles, if two pairs of corresponding angles are congruent and the pair of corresponding sides between the angles is congruent, then the triangles must be congruent.	$\angle A \cong \angle C$, $\overline{AE} \cong \overline{EC}$, $\angle DEA \cong \angle BEC$, so $\triangle DEA \cong \triangle BEC$
U2, L7 definition	A parallelogram is a quadrilateral with two pairs of opposite sides parallel.	NM KL, NK ML, so MNKL is a parallelogram
U2, L7 theorem	In a parallelogram, pairs of opposite sides are congruent.	N KL is a parallelogram, so $NM = KL$, $NK = ML$

lesson, type	statement	diagram
U2, L8 theorem	If a point <i>C</i> is the same distance from <i>A</i> as it is from <i>B</i> , then <i>C</i> must be on the perpendicular bisector of <i>AB</i> .	$\overline{AC} \cong \overline{BC}$, so C is on the line through midpoint M perpendicular to \overline{AB} .
U2, L8 theorem	If <i>C</i> is a point on the perpendicular bisector of <i>AB</i> , the distance from <i>C</i> to <i>A</i> is the same as the distance from <i>C</i> to <i>B</i> .	$AB\perp CM, \overline{AM}\cong \overline{BM}, \text{ so } \overline{AC}\cong \overline{BC}$
U2, L9 theorem	Side-Side-Side Triangle Congruence Theorem: In two triangles, if all three pairs of corresponding sides are congruent, then the triangles must be congruent.	$\overline{H}\overline{U} \cong \overline{H}\overline{J}, \overline{U}\overline{G} \cong \overline{J}\overline{G}, \overline{H}\overline{G} \cong \overline{H}\overline{G}, \text{ so}$ $\Delta H U G \cong \Delta H J G$
U2, L9 theorem	In a parallelogram, opposite angles are congruent.	ABCD is a parallelogram, so $\angle A \cong \angle C$, $\angle D \cong \angle B$

lesson, type	statement	diagram
U5, L2 definition	A dilation is a transformation in which each point on a figure moves along a line and changes its distance from a fixed point, called the "center of dilation." All of the original distances are multiplied by the same scale factor.	
U5, L4 definition	The point-slope form of the equation of a line is $y - k = m(x - h)$ where (h, k) is a particular point on the line and m is the slope of the line.	(h, k)
U5, L5 theorem	Lines are parallel if and only if they have equal slopes.	
U5, L6 theorem	Lines are perpendicular if and only if their slopes are opposite reciprocals.	

date, type	statement	diagram
assertion	A is a,, or any sequence of the three. Rigid transformations take lines to, angles to of the same measure, and segments to of the same length.	
definition	One figure is	
definition	is a rigid transformation that takes a point to another point that is the same from the given line, on the other side of the given line, and so that the segment from the original point to the image is to the given line. "Reflect (object) across line (name)."	Reflect A across line m.
definition	is a rigid transformation that takes a point to another point so that the directed from the original point to the image is to the given line segment and has the same and "Translate _(object) by the directed line segment (name or from [point] to [point])"	Translate A by the directed line segment v.
assertion	Parallel Postulate: Given a m and a A that is not on, there is exactly that goes through A that is to m.	m/ A/

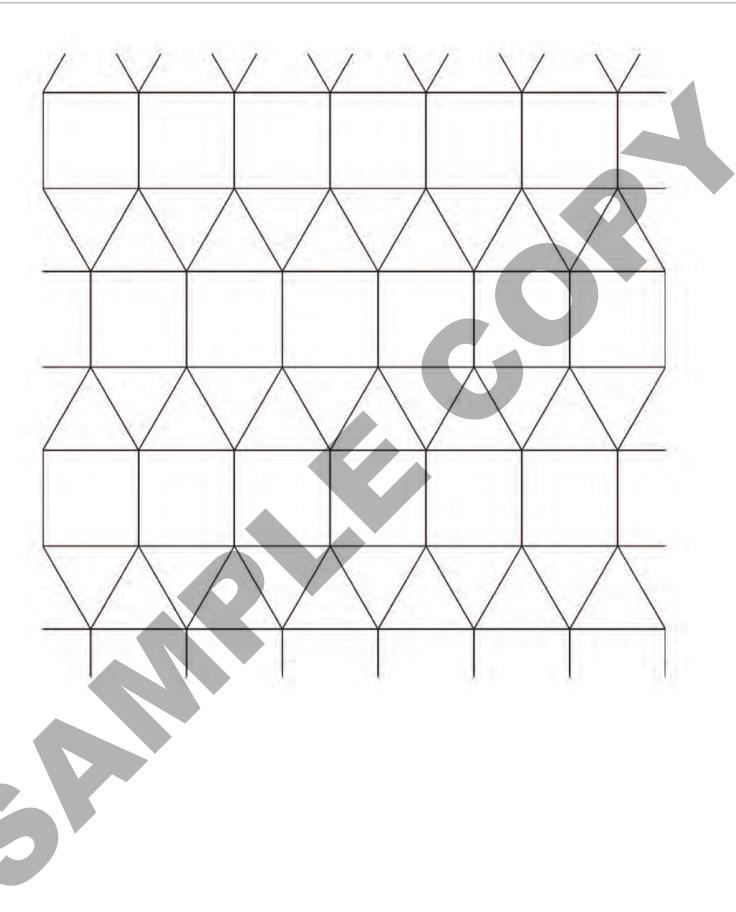
date, type	statement	diagram
theorem	take lines to or to,	
definition	is a transformation that takes a point to another point on the circle through the original point with the given The two radii to the original point and the image make the given "Rotate _(object)_ (clockwise or counterclockwise) by(angle or angle measure)_ using center _(point)"	Rotate P counterclockwise by a° using center C.
theorem	If two figures are, then parts of those figures must be	Q R $D = ADEF \text{ so } PQ = DE, PR = DE$ $QR = EF, \angle P = \angle D, \angle Q = \angle E, \angle R = \angle F$
theorem	If all pairs of corresponding and all pairs of corresponding are congruent, then the must be	$AB=DE$, $BC=EF$, $CA=FD$, $\angle B=\angle E$, $\angle A=\angle D$, $\angle C=\angle F$ so
theorem	If two have the same, then they are	A C D

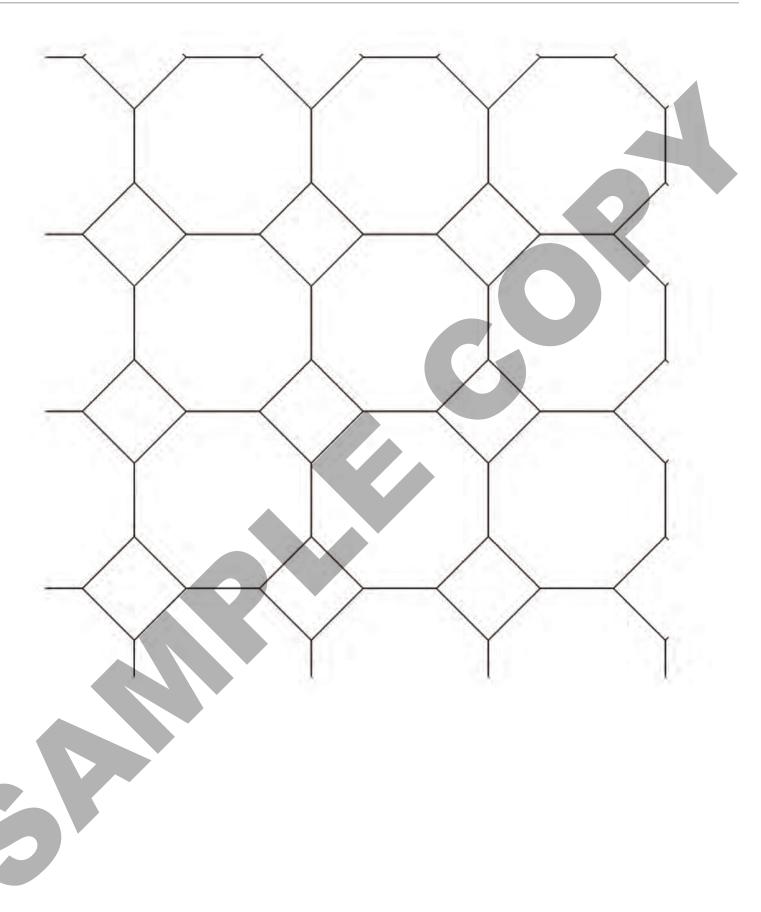
date, type	statement	diagram
theorem	Triangle Congruence Theorem: In two triangles, if two pairs of congruent and the pair of corresponding between the sides are, then the two triangles are	$AB=GB$, $BC=BC$, $\angle ABC=\angle GBC$ so
theorem	Triangle Theorem: In antriangle, theare	A B
theorem	Congruence Theorem: In two triangles, if two pairs of corresponding, and the pair of corresponding between the angles are, then the triangles must be	$A = \angle C$, $AE = EC$, $\angle DEA = \angle BEC$, so
definition	Ais a quadrilateral with two pairs of	NM // KL, NK // ML, so
theorem	In a, pairs of sides are	MNKL is a parallelogram, so

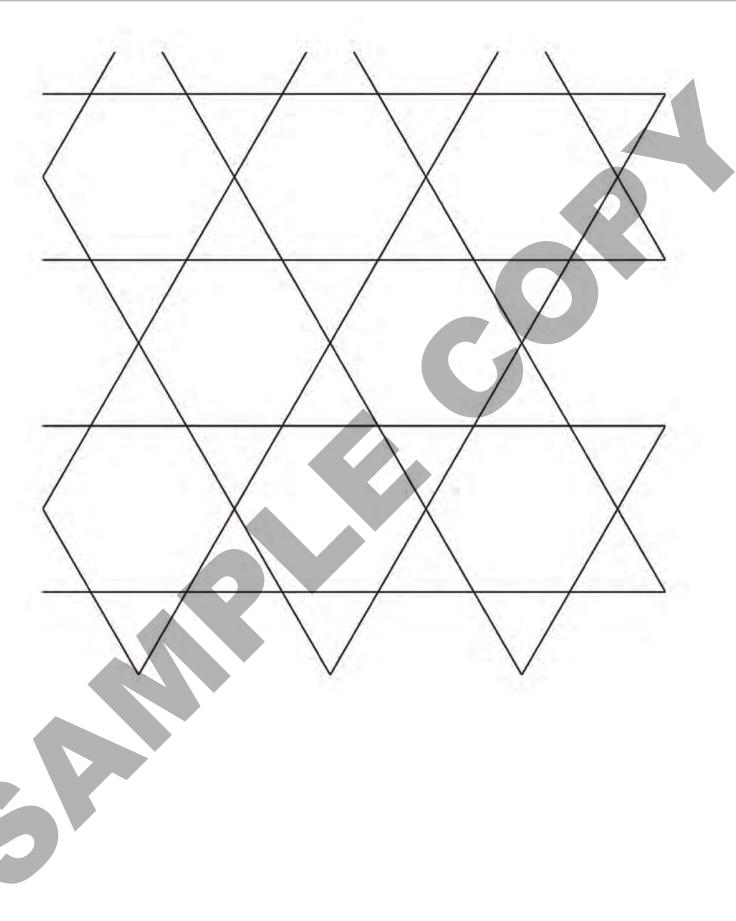
date, type	statement	diagram
theorem	If a C is the same from as it is from, then C must be on the of AB.	AC=BC, M is the midpoint, so
theorem	If C is a point on the of segment AB, the distance from to is the same as the from to	ABLCM, AM=BM, so
theorem	Congruence Theorem: In two triangles, if of corresponding are congruent, then the triangles must be	HU=HJ, UG=JG, HG=HG so
theorem	In a angles are	ABCD is a parallelogram, so

date, type	statement	diagram
definition	A is a transformation in which each point on a figure moves along a line and changes its distance from a fixed point, called the "" All of the original distances are multiplied by the same	C 2 3 4 X B A
definition	The form of the equation of a line is on the line and m is the of the line.	*
theorem	Lines are if and only if they have	
theorem	Lines are if and only if their	

lesson, type	statement	diagram		
U1, L10 (students write the date) assertion	A rigid transformation is a translation, reflection, rotation, or any sequence of the three. Rigid transformations take lines to lines, angles to angles of the same measure, and segments to segments of the same length.			
U1, L10 definition	One figure is congruent to another if there is a sequence of translations, rotations, and reflections that takes the first figure exactly onto the second figure. The second figure is called the image of the rigid transformation.	$\Delta EDC \cong \Delta E'D'C'$		
U1, L11 definition	Reflection is a rigid transformation that takes a point to another point that is the same distance from the given line, is on the other side of the given line, and so that the segment from the original point to the image is perpendicular to the given line. "Reflect (object) across line (name)."	Reflect A across line m.		
U1, L12 definition	Translation is a rigid transformation that takes a point to another point so that the directed line segment from the original point to the image is parallel to the given line segment and has the same length and direction. "Translate (object) by the directed line segment (name or from [point] to [point])."	Translate A by the directed line segment v.		
U1, L12 assertion	Parallel Postulate: Given a line m and a point A that is not on m , there is exactly one line that goes through A that is parallel to m .	m/ A/		


lesson, type	statement	diagram
U1, L12 theorem	Translations take lines to parallel lines or to themselves.	m/m'/
U1, L14 definition	Rotation is a rigid transformation that takes a point to another point on the circle through the original point with the given center. The two radii to the original point and the image make the given angle. "Rotate (object) (clockwise or counterclockwise) by (angle or angle measure) using center (point)."	Rotate P counterclockwise by a° using center C.
U2, L1 theorem	If two figures are congruent, then corresponding parts of those figures must be congruent	P R
U2, L3 theorem	If all pairs of corresponding sides and all pairs of corresponding angles are congruent, then the triangles must be congruent.	$AB=DE$, $BC=EF$, $CA=FD$, $\angle B\cong \angle E$, $\angle A\cong \angle D$, $\angle C\cong \angle F$ so $\triangle ABC\cong \triangle DEF$
U2, L5 theorem	If two <mark>segments</mark> have the same <mark>length</mark> , then they are congruent.	$A \longrightarrow C$ B $AB = CD \text{ so, } \overline{AB} \cong \overline{CD}$


lesson, type	statement	diagram		
U2, L6 theorem	Side-Angle-Side Triangle Congruence Theorem: In two triangles, if two pairs of congruent corresponding sides and the pair of corresponding angles between the sides are congruent, then the two triangles are congruent.	$AB=GB$, $BC=BC$, $\angle ABC=\angle GBC$ so $\triangle ABC=\triangle GBC$		
U2, L6 theorem	Isosceles Triangle Theorem: In an isosceles triangle, the base angles are congruent.	A B AP=PB so ∠A≡∠B		
U2, L7 theorem	Angle-Side-Angle Triangle Congruence Theorem: In two triangles, if two pairs of corresponding angles, and the pair of corresponding sides between the angles are congruent, then the triangles must be congruent.	A $\angle A = \angle C$, $AE = EC$, $\angle DEA = \angle BEC$, $A = \triangle BEC$		
U2, L7 definition	A parallelogram is a quadrilateral with two pairs of opposite sides parallel.	NM KL, NK ML, so MNKL is a parallelogram		
U2, L7 theorem	In a <mark>parallelogram</mark> , pairs of <mark>opposite</mark> sides are congruent.	MNKL is a parallelogram, so NM=KL, NK=ML		


lesson, type	statement	diagram		
U2, L8 theorem	If a point C is the same distance from A as it is from B, then C must be on the perpendicular bisector of AB.	AC=BC, M is the midpoint, so MCLA		
U2, L8 theorem	If C is a point on the perpendicular bisector of segment AB , the distance from C to C is the same as the distance from C to C to C .	AB⊥CM, AM=BM, so AC=BC		
U2, L9 theorem	Side-Side-Side Triangle Congruence Theorem: In two triangles, if all three pairs of corresponding sides are congruent, then the triangles must be congruent.	HU=HJ, UG=JG, HG=HG so ΔHUG ■ ΔHJG		
U2, L9 theorem	In a parallelogram, opposite angles are congruent.	A ABCD is a parallelogram, so $\angle A = \angle C$, $\angle D = \angle B$		

lesson, type	statement	diagram		
U5, L2 definition	A dilation is a transformation in which each point on a figure moves along a line and changes its distance from a fixed point, called the "center of dilation." All of the original distances are multiplied by the same scale factor.	C 2 3 4 X B' A A		
U5, L4 definition	The point-slope form of the equation of a line is $y - k = m(x - h)$ where (h, k) is a particular point on the line and m is the slope of the line.	×		
U5, L5 theorem	Lines are parallel if and only if they have equal slopes.			
U5, L6 theorem	Lines are perpendicular if and only if their slopes are opposite reciprocals.			

Looks like / Sounds like	Teacher	Looks like / Sounds like	Students		
				Doing Math	
	Teacher		Students		Math Community
			L.	Norms	

date, type	statement	diagram
		-

Info Gap: What's the Point: Reflections

Problem Card 1

Triangle *GEN* has been reflected so that the vertices of its image are labeled points. What is the image of triangle *GEN*?

Info Gap: What's the Point: Reflections

Data Card 1

- The image of A is L and the image of L is A
- The image of G is G.
- The image of N is U and the image of U is
- The image of P is T and the image of T is P
- The image of R is R.

Info Gap: What's the Point: Reflections

Problem Card 2

Several points have been reflected across a line that goes through 2 of the labeled points. Precisely describe the reflection.

Info Gap: What's the Point: Reflections

- The image of A is G and the image of G is A.
- The image of D is D.
- The image of I is V and the image of V is I.
- The image of J is T and the image of T is J.
- The image of L is Q and the image of Q is L
- The image of N is N.

This page includes an additional set of info gap cards to use as an optional demonstration.

Cards for the student activity are located on the following page.

Info Gap: What's the Point?: Rotations

Problem Card 0

Triangle *JKF* has been rotated so that the vertices of its image are labeled points. What is its image?

Info Gap: What's the Point?: Rotations

Data Card 0

- The angle of rotation is KMC.
- The rotation is clockwise.
- The center of rotation is M.
- The image of M is M.
- The image of G is U.

Info Gap: What's the Point?: Rotations

Problem Card 0

Triangle *JKF* has been rotated so that the vertices of its image are labeled points. What is its image?

Info Gap: What's the Point?: Rotations

Data Card 0

- The angle of rotation is KMC.
- The rotation is clockwise.
- The center of rotation is M.
- The image of M is M.
- The image of G is U.

Info Gap: What's the Point?: Rotations

Problem Card 0

Triangle JKF has been rotated so that the vertices of its image are labeled points. What is its image?

Info Gap: What's the Point?; Rotations

- The angle of rotation is KMC.
- The rotation is clockwise.
- The center of rotation is M.
- The image of M is M.
- The image of G is U.

Info Gap: What's the Point?: Rotations

Problem Card 1

Triangle *DCI* has been rotated so that the vertices of its image are labeled points. What is its image?

Info Gap: What's the Point?: Rotations

Data Card 1

- The angle of rotation is HLI.
- The rotation is counterclockwise.
- The center of rotation is L.
- The image of C is G.
- The image of I is H.
- The image of L is L.
- The image of V is D.

Info Gap: What's the Point?: Rotations

Problem Card 2

Several points have been rotated around a labeled point. Precisely describe the rotation.

Info Gap: What's the Point?: Rotations

Data Card 2

- The angle of rotation is HNW.
- The center of rotation is N.
- The image of F is H.
- The image of H is W.
- The image of J is B.
- The image of N is N.

Info Gap: What's the Point?: Rotations

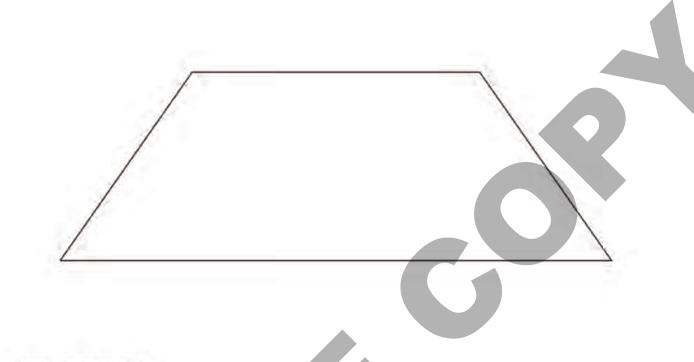
Problem Card 1

Triangle *DCI* has been rotated so that the vertices of its image are labeled points. What is its image?

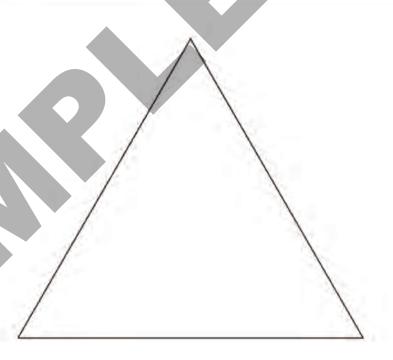
Info Gap: What's the Point?: Rotations

Data Card 1

- The angle of rotation is HLI.
- The rotation is counterclockwise.
- The center of rotation is L.
- The image of C is G.
- The image of I is H.
- The image of L is L.
- The image of V is D.

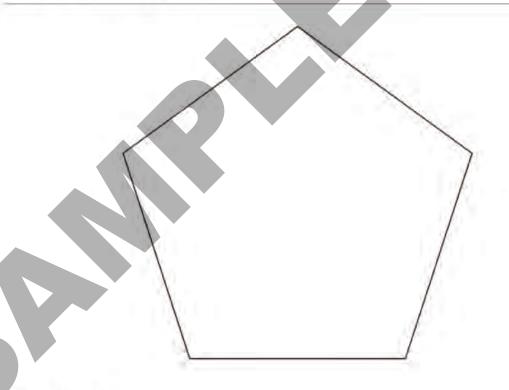

Info Gap: What's the Point?: Rotations

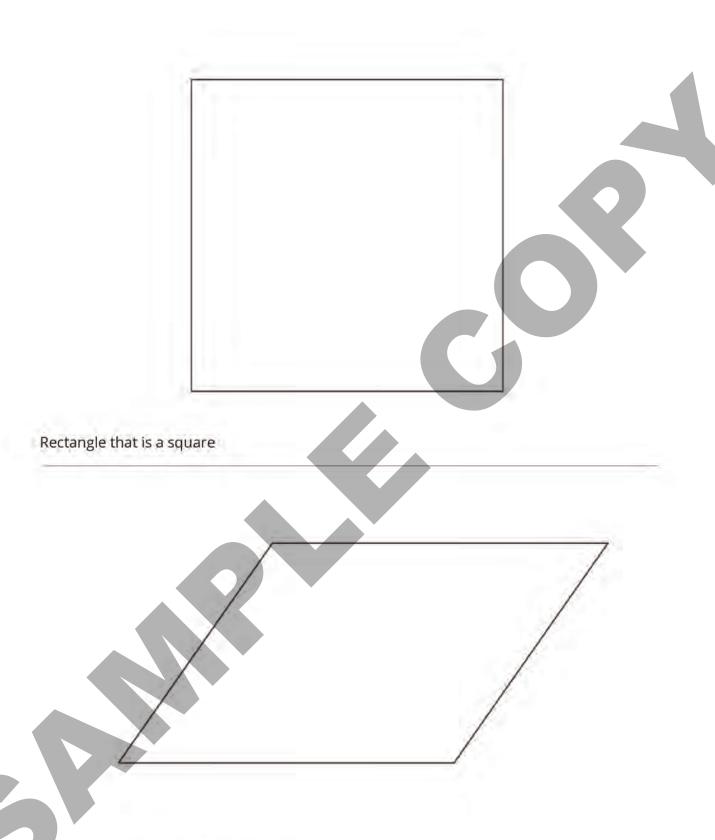
Problem Card 2

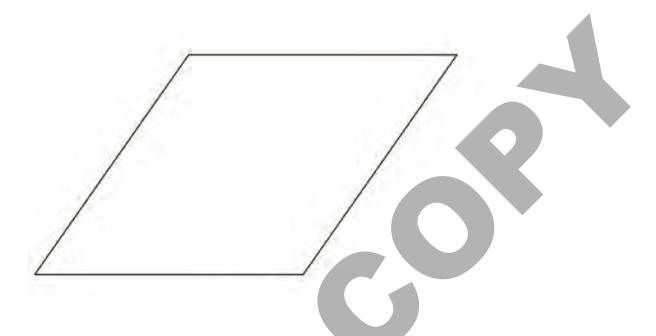

Several points have been rotated around a labeled point. Precisely describe the rotation.

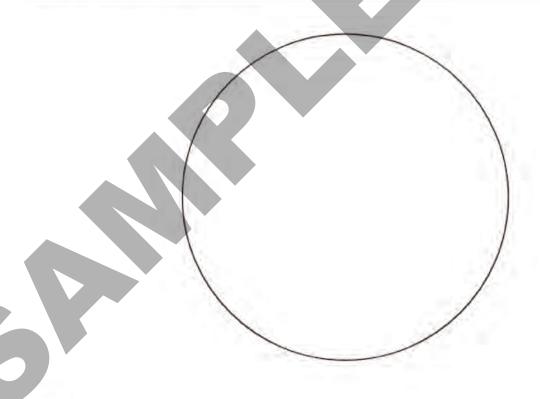
Info Gap: What's the Point?: Rotations

- The angle of rotation is HNW.
- The center of rotation is N.
- The image of F is H.
- The image of H is W.
- The image of J is B.
- The image of N is N.

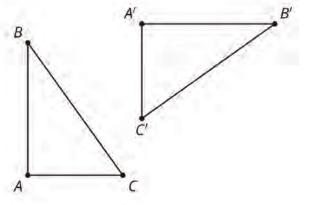

Isosceles trapezoid


Equilateral triangle

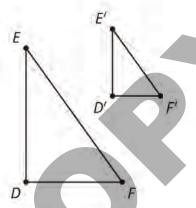

Rectangle that is not a square


Regular pentagon

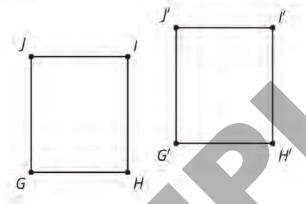
Parallelogram that is not a rhombus


Parallelogram that is a rhombus

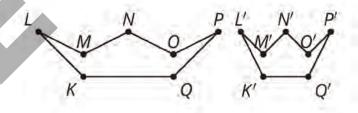
Circle


Card Sort: How Did This Get There?

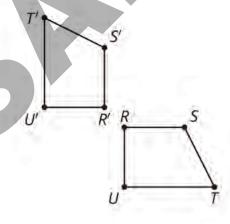
Card 1


Card Sort: How Did This Get There?

Card 2

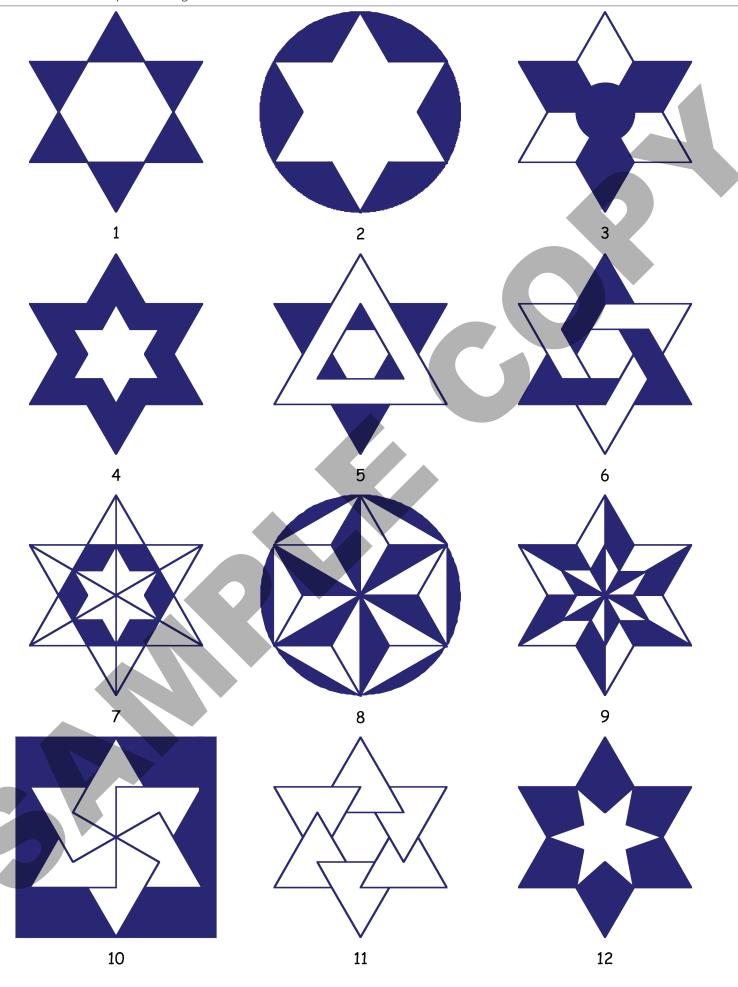

Card Sort: How Did This Get There?

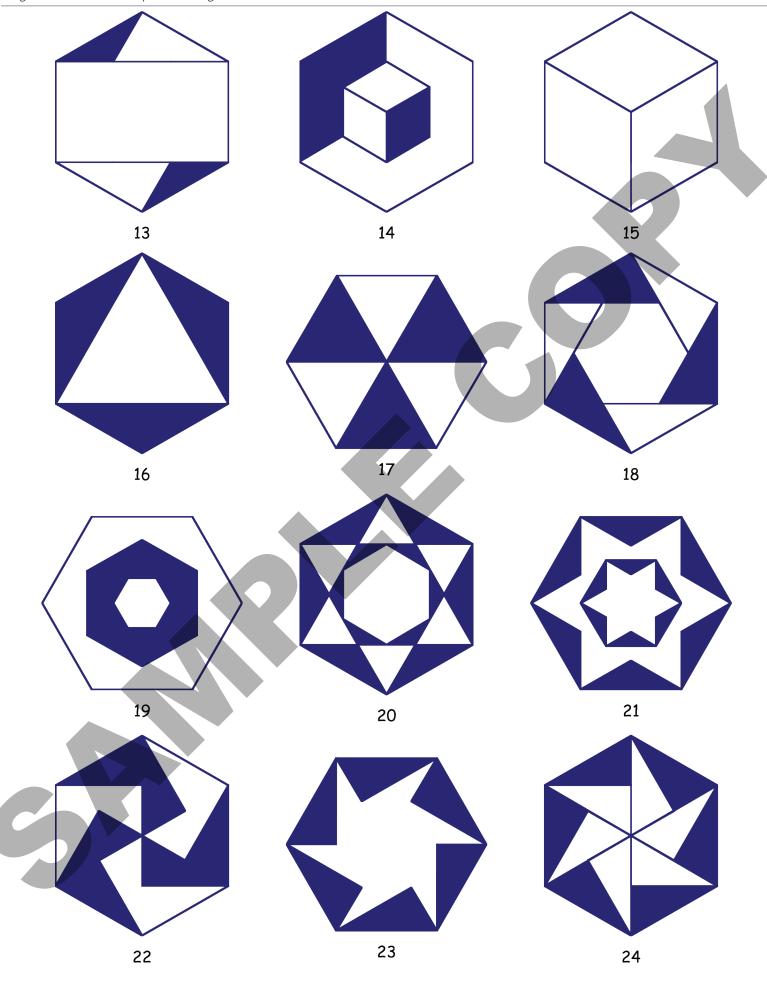
Card 3

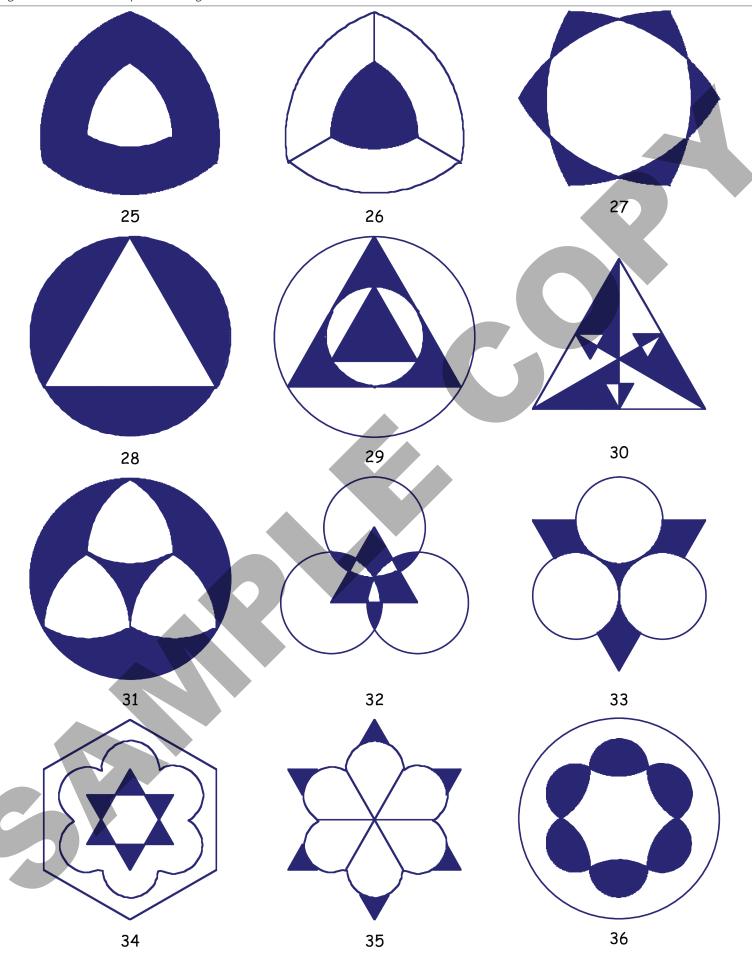

Card Sort: How Did This Get There?

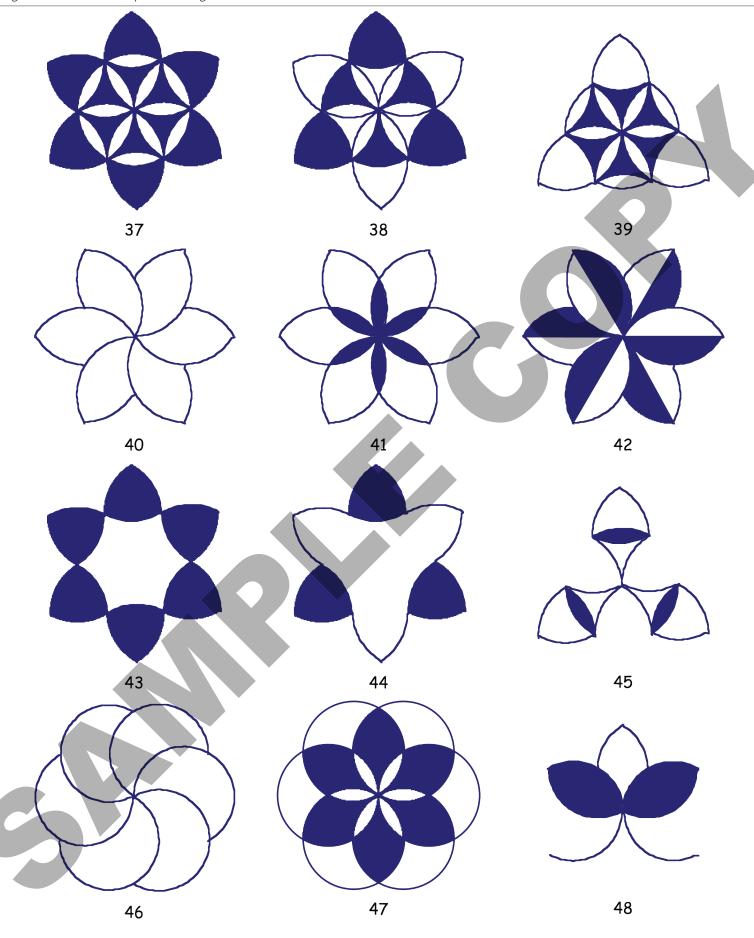
Card 4


Card Sort: How Did This Get There?


Card 5




Card Sort: How Did This Get There?


Card 6

2

Teacher Resource Copy Masters

LESSON BLACKLINE MASTERS

date, type	statement	diagram
4		

lesson, type	statement	diagram
U1, L10 (students write the date) assertion	A rigid transformation is a translation, reflection, rotation, or any sequence of the three. Rigid transformations take lines to lines, angles to angles of the same measure, and segments to segments of the same length.	
U1, L10 definition	Two figures are congruent if there is a sequence of translations, rotations, and reflections that takes one figure exactly onto the other. The second figure is called the image of the rigid transformation.	$\Delta EDC \cong \Delta E'D'C'$
U1, L11 definition	Reflection is a rigid transformation that takes a point to another point that is the same distance from the given line, that is on the other side of the given line, and so that the segment from the original point to the image is perpendicular to the given line. "Reflect (object) across line (name)."	Reflect A across line m.
U1, L12 definition	Translation is a rigid transformation that takes a point to another point so that the directed line segment from the original point to the image is parallel to the given line segment and has the same length and direction. "Translate (object) by the directed line segment (name or from [point] to [point])."	Translate A by the directed line segment v.
U1, L12 assertion	Parallel Postulate: Given a line <i>m</i> and a point <i>A</i> that is not on <i>m</i> , there is exactly one line that goes through <i>A</i> that is parallel to <i>m</i> .	m/ / A/

lesson, type	statement	diagram
U1, L12 theorem	Translations take lines to parallel lines or to themselves.	m/ m'/ m // m'
U1, L14 definition	Rotation is a rigid transformation that takes a point to another point on the circle through the original point with the given center. The two radii, the one from the center to the original point and the one from the center to the image, make the given angle. "Rotate (object) (clockwise or counterclockwise) by (angle or angle measure) using center (point)."	Rotate P counterclockwise by a° using center C.
U2, L1 theorem	If two figures are congruent, then corresponding parts of those figures must be congruent	$ \begin{array}{c} Q \\ R \\ \hline PR = DF, \overline{QR} = \overline{EF}, \angle P = \angle D, \angle Q = \angle E, \\ \angle R = \angle F \end{array} $
U2, L3 theorem	If all pairs of corresponding sides and all pairs of corresponding angles are congruent, then the triangles must be congruent.	$\overline{AB} = \overline{DE}, \overline{BC} = \overline{EF}, \overline{AC} = \overline{DF}, \angle A \cong \angle D,$ $\angle B \cong \angle E, \angle C \cong \angle F \text{ so } \triangle ABC \cong \triangle DEF$
U2, L5 theorem	If two segments have the same length, then they are congruent.	A $AB=CD, \text{ so } \overline{AB}\cong \overline{CD}$

lesson, type	statement	diagram
U2, L6 theorem	Side-Angle-Side Triangle Congruence Theorem: In two triangles, if two pairs of congruent corresponding sides and the pair of corresponding angles between the sides are congruent, then the two triangles are congruent.	$\overline{AB} = \overline{GB}, \overline{BC} = \overline{BC}, \angle ABC = \angle GBC \le \triangle ABC = \triangle GBC$
U2, L6 theorem	Isosceles Triangle Theorem: In an isosceles triangle, the base angles are congruent.	$A \longrightarrow B$ $\overline{AP} \cong \overline{PB}$, so $\angle A \cong \angle B$
U2, L7 theorem	Angle-Side-Angle Triangle Congruence Theorem: In two triangles, if two pairs of corresponding angles are congruent and the pair of corresponding sides between the angles is congruent, then the triangles must be congruent.	$\angle A \cong \angle C, \overline{AE} \cong \overline{EC}, \angle DEA \cong \angle BEC$ so $\triangle DEA \cong \triangle BEC$
U2, L7 definition	A parallelogram is a quadrilateral with two pairs of opposite sides parallel.	N
U2, L7 theorem	In a parallelogram, pairs of opposite sides are congruent.	N K N

lesson, type	statement	diagram
U2, L8 theorem	If a point <i>C</i> is the same distance from <i>A</i> as it is from <i>B</i> , then <i>C</i> must be on the perpendicular bisector of <i>AB</i> .	$\overline{AC} \cong \overline{BC}$, so C is on the line through midpoint M perpendicular to \overline{AB} .
U2, L8 theorem	If <i>C</i> is a point on the perpendicular bisector of <i>AB</i> , the distance from <i>C</i> to <i>A</i> is the same as the distance from <i>C</i> to <i>B</i> .	$AB\perp CM, \overline{AM}\cong \overline{BM}, \text{ so } \overline{AC}\cong \overline{BC}$
U2, L9 theorem	Side-Side-Side Triangle Congruence Theorem: In two triangles, if all three pairs of corresponding sides are congruent, then the triangles must be congruent.	$\overline{H}\overline{U} \cong \overline{H}\overline{J}, \overline{U}\overline{G} \cong \overline{J}\overline{G}, \overline{H}\overline{G} \cong \overline{H}\overline{G}, \text{ so}$ $\Delta H U G \cong \Delta H J G$
U2, L9 theorem	In a parallelogram, opposite angles are congruent.	ABCD is a parallelogram, so $\angle A \cong \angle C$, $\angle D \cong \angle B$

lesson, type	statement	diagram
U5, L2 definition	A dilation is a transformation in which each point on a figure moves along a line and changes its distance from a fixed point, called the "center of dilation." All of the original distances are multiplied by the same scale factor.	
U5, L4 definition	The point-slope form of the equation of a line is $y - k = m(x - h)$ where (h, k) is a particular point on the line and m is the slope of the line.	(h, k)
U5, L5 theorem	Lines are parallel if and only if they have equal slopes.	
U5, L6 theorem	Lines are perpendicular if and only if their slopes are opposite reciprocals.	

date, type	statement	diagram
assertion	A is a,,, or any sequence of the three. Rigid transformations take lines to, angles to of the same measure, and segments to of the same length.	
definition	One figure is to another if there is a sequence of, and, and that takes the first figure onto the second figure. The second figure is called the of the rigid transformation.	
definition	is a rigid transformation that takes a point to another point that is the same from the given line, on the other side of the given line, and so that the segment from the original point to the image is to the given line. "Reflect (object) across line (name)."	Reflect A across line m.
definition	is a rigid transformation that takes a point to another point so that the directed from the original point to the image is to the given line segment and has the same and "Translate _(object)_ by the directed line segment (name or from [point] to [point])"	Translate A by the directed line segment v.
assertion	Parallel Postulate: Given a m and a A that is not on, there is exactly that goes through A that is to m.	m/ A/

date, type	statement	diagram
theorem	take lines to or to,	
definition	is a transformation that takes a point to another point on the circle through the original point with the given The two radii to the original point and the image make the given "Rotate _(object)_ (clockwise or counterclockwise) by(angle or angle measure)_ using center _(point)"	Rotate P counterclockwise by a° using center C.
theorem	If two figures are, then parts of those figures must be	$ \begin{array}{cccc} & & & & & & & & & & & \\ & & & & & & &$
theorem	If all pairs of corresponding and all pairs of corresponding are congruent, then the must be	$AB=DE$, $BC=EF$, $CA=FD$, $\angle B=\angle E$, $\angle A=\angle D$, $\angle C=\angle F$ so
theorem	If two have the same, then they are	A C D

date, type	statement	diagram
theorem	Triangle Congruence Theorem: In two triangles, if two pairs of congruent and the pair of corresponding between the sides are, then the two triangles are	$AB=GB$, $BC=BC$, $\angle ABC=\angle GBC$ so
theorem	Triangle Theorem: In antriangle, theare	A B
theorem	Triangle Congruence Theorem: In two triangles, if two pairs of corresponding, and the pair of corresponding between the angles are, then the triangles must be	$ \begin{array}{c} C \\ B \\ A \end{array} $ $ \angle A = \angle C, AE = EC, \angle DEA = \angle BEC, \text{ so} $
definition	Ais a quadrilateral with two pairs of	NM KL, NK ML, so
theorem	In a, pairs ofsides are	MNKL is a parallelogram, so

date, type	statement	diagram
theorem	If a C is the same from as it is from, then C must be on the of AB.	AC=BC, M is the midpoint, so
theorem	If C is a point on the of segment AB, the distance from to is the same as the from to	ABLCM, AM=BM, so
theorem	Congruence Theorem: In two triangles, if of corresponding are congruent, then the triangles must be	HU=HJ, UG=JG, HG=HG so
theorem	In a angles are	ABCD is a parallelogram, so

date, type	statement	diagram
definition	A is a transformation in which each point on a figure moves along a line and changes its distance from a fixed point, called the "" All of the original distances are multiplied by the same	C 2 3 4 X B A
definition	The form of the equation of a line is where (h, k) is a particular on the line and m is the of the line.	*
theorem	Lines are if and only if they have	
theorem	Lines are if and only if their are	

lesson, type	statement	diagram
U1, L10 (students write the date) assertion	A rigid transformation is a translation, reflection, rotation, or any sequence of the three. Rigid transformations take lines to lines, angles to angles of the same measure, and segments to segments of the same length.	
U1, L10 definition	One figure is congruent to another if there is a sequence of translations, rotations, and reflections that takes the first figure exactly onto the second figure. The second figure is called the image of the rigid transformation.	D D E ΔΕ'D'C'
U1, L11 definition	Reflection is a rigid transformation that takes a point to another point that is the same distance from the given line, is on the other side of the given line, and so that the segment from the original point to the image is perpendicular to the given line. "Reflect (object) across line (name)."	Reflect A across line m.
U1, L12 definition	Translation is a rigid transformation that takes a point to another point so that the directed line segment from the original point to the image is parallel to the given line segment and has the same length and direction. "Translate (object) by the directed line segment (name or from [point] to [point])."	Translate A by the directed line segment v.
U1, L12 assertion	Parallel Postulate: Given a line m and a point A that is not on m , there is exactly one line that goes through A that is parallel to m .	m/ A/

lesson, type	statement	diagram
U1, L12 theorem	Translations take lines to parallel lines or to themselves.	m/ m'/
U1, L14 definition	Rotation is a rigid transformation that takes a point to another point on the circle through the original point with the given center. The two radii to the original point and the image make the given angle. "Rotate (object) (clockwise or counterclockwise) by (angle or angle measure) using center (point)."	Rotate P counterclockwise by a° using center C.
U2, L1 theorem	If two figures are congruent, then corresponding parts of those figures must be congruent	Q R D R D R D R R D R
U2, L3 theorem	If all pairs of corresponding sides and all pairs of corresponding angles are congruent, then the triangles must be congruent.	$AB=DE$, $BC=EF$, $CA=FD$, $\angle B\cong \angle E$, $\angle A\cong \angle D$, $\angle C\cong \angle F$ so $\triangle ABC\cong \triangle DEF$
U2, L5 theorem	If two segments have the same length, then they are congruent.	$A \longrightarrow C$ $B \longrightarrow C$ $AB = CD \text{ so, } \overline{AB} \cong \overline{CD}$

lesson, type	statement	diagram
U2, L6 theorem	Side-Angle-Side Triangle Congruence Theorem: In two triangles, if two pairs of congruent corresponding sides and the pair of corresponding angles between the sides are congruent, then the two triangles are congruent.	$AB=GB$, $BC=BC$, $\angle ABC=\angle GBC$ so $\triangle ABC=\triangle GBC$
U2, L6 theorem	Isosceles Triangle Theorem: In an isosceles triangle, the base angles are congruent.	A B AP=PB so ∠A≡∠B
U2, L7 theorem	Angle-Side-Angle Triangle Congruence Theorem: In two triangles, if two pairs of corresponding angles, and the pair of corresponding sides between the angles are congruent, then the triangles must be congruent.	A $\angle A = \angle C$, $AE = EC$, $\angle DEA = \angle BEC$, $A = \triangle BEC$
U2, L7 definition	A parallelogram is a quadrilateral with two pairs of opposite sides parallel.	NM KL, NK ML, so MNKL is a parallelogram
U2, L7 theorem	In a <mark>parallelogram</mark> , pairs of <mark>opposite</mark> sides are congruent.	MNKL is a parallelogram, so NM=KL, NK=ML

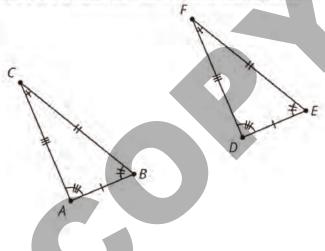
lesson, type	statement	diagram
U2, L8 theorem	If a point C is the same distance from A as it is from B, then C must be on the perpendicular bisector of AB.	AC=BC, M is the midpoint, so MC_AB
U2, L8 theorem	If C is a point on the perpendicular bisector of segment AB , the distance from $\frac{C}{C}$ to $\frac{A}{C}$ is the same as the distance from $\frac{C}{C}$ to $\frac{B}{C}$.	AB⊥CM, AM=BM, so AC=BC
U2, L9 theorem	Side-Side-Side Triangle Congruence Theorem: In two triangles, if all three pairs of corresponding sides are congruent, then the triangles must be congruent.	HU=HJ, UG=JG, HG=HG so ΔHUG ≅ ΔHJG
U2, L9 theorem	In a parallelogram, opposite angles are congruent.	A $ABCD$ is a parallelogram, $ABCD = ABCD = ABCD$

lesson, type	statement	diagram
U5, L2 definition	A dilation is a transformation in which each point on a figure moves along a line and changes its distance from a fixed point, called the "center of dilation." All of the original distances are multiplied by the same scale factor.	C 2 3 4 X B' A A
U5, L4 definition	The point-slope form of the equation of a line is $y - k = m(x - h)$ where (h, k) is a particular point on the line and m is the slope of the line.	*
U5, L5 theorem	Lines are parallel if and only if they have equal slopes.	
U5, L6 theorem	Lines are perpendicular if and only if their slopes are opposite reciprocals.	

Invisible Triangles

Transformer

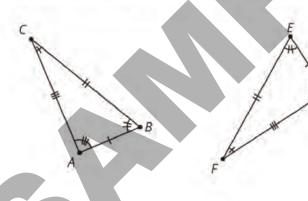
Listen to hear which parts of the triangles correspond. Then give instructions to take one triangle onto the other.


Possible instructions:

- Translate _____ from _____ to ____.
 Rotate _____ using _____ as the center by angle _____.
- Rotate using _____ as the center so that ____ coincides with _____.
- Reflect _____ across _____.
- Reflect _____ across the perpendicular bisector of _____.

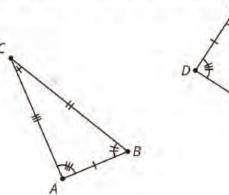
Invisible Triangles

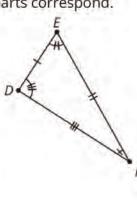
Card A


Tell the transformer which parts correspond.

Invisible Triangles

Card B


Tell the transformer which parts correspond.



Invisible Triangles

Card C

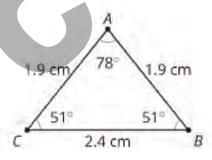
Tell the transformer which parts correspond.

Proving the Triangle Congruence Theorems Sentence Frames for Proofs

Tra	ansformations:
•	Translate from to
•	Rotate using as the center by angle
•	Rotate as the center so that coincides with
•	Reflect across
•	Reflect across the perpendicular bisector of
•	Segments and are the same length so they are congruent. Therefore, there is a
lue	rigid motion that takes to Apply that rigid motion to stifications:
-	
•	We know the image of is congruent to because rigid motions preserve measure.
•	Points and coincide after translating because we defined our translation that way!
•	Since points and are the same distance along the same ray from they
	have to be in the same place.
•	Rays and coincide after rotating because we defined our rotation that way!
•	The image of must be on ray since both and are on the same
	side of and make the same angle with it at
•	Points and coincide because they are both at the intersection of the same
	lines, and 2 distinct lines can only intersect in 1 place.
•	is the perpendicular bisector of the segment connecting and, because
	the perpendicular bisector is determined by 2 points that are both equidistant from the
	endpoints of a segment.
_	
Со	nclusion statement:
•	We have shown that a rigid motion takes to, to, and to
	, therefore triangle is congruent to triangle

This page includes an additional set of info gap cards to use as an optional demonstration.

Cards for the student activity are located on the following page.

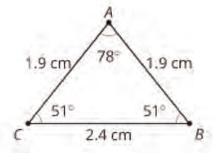

Info Gap: TMI

Problem Card 0

Construct a triangle that is congruent to your partner's. What is the least amount of information that you need?

Info Gap: TMI

Data Card 0

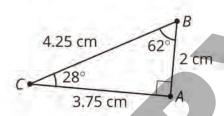


Info Gap: TMI

Problem Card 0

Construct a triangle that is congruent to your partner's. What is the least amount of information that you need?

Info Gap: TMI

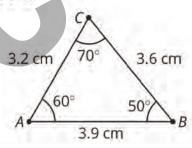

Info Gap: TMI

Problem Card 1

Construct a triangle that is congruent to your partner's. What is the least amount of information that you need?

Info Gap: TMI

Data Card 1

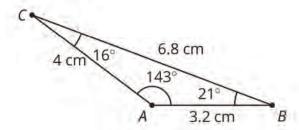

Info Gap: TMI

Problem Card 2

Construct a triangle that is congruent to your partner's. What is the least amount of information that you need?

Info Gap: TMI

Data Card 2



Info Gap: TMI

Problem Card 3

Construct a triangle that is congruent to your partner's. What is the least amount of information that you need?

Info Gap: TMI

Proving the Triangle Congruence Theorems Sentence Frames for Proofs

Tra	ansformations:
•	Translate from to
•	Rotate using as the center by angle
•	Rotate as the center so that coincides with
•	Reflect across
•	Reflect across the perpendicular bisector of
•	Segments and are the same length so they are congruent. Therefore, there is a
lue	rigid motion that takes to Apply that rigid motion to stifications:
-	
•	We know the image of is congruent to because rigid motions preserve measure.
•	Points and coincide after translating because we defined our translation that way!
•	Since points and are the same distance along the same ray from they
	have to be in the same place.
•	Rays and coincide after rotating because we defined our rotation that way!
•	The image of must be on ray since both and are on the same
	side of and make the same angle with it at
•	Points and coincide because they are both at the intersection of the same
	lines, and 2 distinct lines can only intersect in 1 place.
•	is the perpendicular bisector of the segment connecting and, because
	the perpendicular bisector is determined by 2 points that are both equidistant from the
	endpoints of a segment.
_	
Со	nclusion statement:
•	We have shown that a rigid motion takes to, to, and to
	, therefore triangle is congruent to triangle

Proving the Triangle Congruence Theorems Sentence Frames for Proofs

Transformations:
• Translate from to
Rotate using as the center by angle
 Rotate using as the center so that coincides with
Reflect across
Reflect across the perpendicular bisector of
 Segments and are the same length so they are congruent. Therefore, there is a
rigid motion that takes to Apply that rigid motion to
Justifications:
 We know the image of is congruent to because rigid motions preserve measure.
 Points and coincide after translating because we defined our translation that way!
Since points and are the same distance along the same ray from they
have to be in the same place.
 Rays and coincide after rotating because we defined our rotation that way!
 The image of must be on ray since both and are on the same side of and make the same angle with it at
Points and coincide because they are both at the intersection of the same
lines, and 2 distinct lines can only intersect in 1 place.
• is the perpendicular bisector of the segment connecting and, because
the perpendicular bisector is determined by 2 points that are both equidistant from the
endpoints of a segment.
Conclusion statement:
 We have shown that a rigid motion takes to, to, and to
, therefore triangle is congruent to triangle

What Do We Know For Sure About Isosceles Triangles? **Kiran**

Kiran: I'm stumped on this proof. Mai: What are you trying to prove?

Kiran: I'm trying to prove that in an isosceles triangle, the two base angles are congruent. So in this case, that angle *A* is congruent to angle *B*. Mai: Let's think of what geometry ideas we already know are true.

Kiran: We know if two pairs of corresponding sides, and the corresponding angles between the sides, are congruent, then the triangles must be congruent.

Mai: Yes, and we also know that we can use reflections, rotations, and translations to prove congruence and symmetry. . . The isosceles triangle you've drawn makes me think of symmetry. If you draw a line down the middle of it, I wonder if that could help us prove that the angles are the same?

[Mai draws the line of symmetry of the triangle and labels the intersection of AB and the line of symmetry Q].

Kiran: Wait, when you draw the line, it breaks the triangle into two smaller triangles. I wonder if I could prove those triangles are congruent using Side-Angle-Side Congruence?

Mai: It's an isosceles triangle, so we know that one pair of corresponding sides is congruent. [Mai marks the congruent sides.]

Kiran: And this segment in the middle here is part of both triangles, so it has to be the same length for both. Look.

[Kiran draws the two halves of the isosceles triangle and marks the shared sides as congruent.]

Mai: So we have two pairs of corresponding sides that are congruent. How do we know the angles between them are congruent?

Kiran: I'm not sure. Maybe it has to do with how we drew that line of symmetry?

What Do We Know For Sure About Isosceles Triangles?

Kiran: I'm stumped on this proof.

Mai: What are you trying to prove?

Kiran: I'm trying to prove that in an isosceles triangle, the two base angles are congruent. So in this case, that angle A is congruent to angle B.

Mai: Let's think of what geometry ideas we already know are true.

Kiran: We know if two pairs of corresponding sides, and the corresponding angles between the sides, are congruent, then the triangles must be congruent.

Mai: Yes, and we also know that we can use reflections, rotations, and translations to prove congruence and symmetry. . . The isosceles triangle you've drawn makes me think of symmetry. If you draw a line down the middle of it, I wonder if that could help us prove that the angles are the same?

[Mai draws the line of symmetry of the triangle and labels the intersection of AB and the line of symmetry Q.]

Kiran: Wait, when you draw the line, it breaks the triangle into two smaller triangles. I wonder if I could prove those triangles are congruent using Side-Angle-Side Congruence?

Mai: It's an isosceles triangle, so we know that one pair of corresponding sides is congruent. [Mai marks the congruent sides.]

Kiran: And this segment in the middle here is part of both triangles, so it has to be the same length for both. Look.

[Kiran draws the two halves of the isosceles triangle and marks the shared sides as congruent.]

Mai: So we have two pairs of corresponding sides that are congruent. How do we know the angles between them are congruent?

Kiran: I'm not sure. Maybe it has to do with how we drew that line of symmetry?

Proving the Triangle Congruence Theorems Sentence Frames for Proofs

Transformations:
• Translate from to
Rotate using as the center by angle
 Rotate using as the center so that coincides with
Reflect across
Reflect across the perpendicular bisector of
 Segments and are the same length so they are congruent. Therefore, there is a
rigid motion that takes to Apply that rigid motion to
Justifications:
 We know the image of is congruent to because rigid motions preserve measure.
 Points and coincide after translating because we defined our translation that way!
Since points and are the same distance along the same ray from they
have to be in the same place.
 Rays and coincide after rotating because we defined our rotation that way!
 The image of must be on ray since both and are on the same side of and make the same angle with it at
Points and coincide because they are both at the intersection of the same
lines, and 2 distinct lines can only intersect in 1 place.
• is the perpendicular bisector of the segment connecting and, because
the perpendicular bisector is determined by 2 points that are both equidistant from the
endpoints of a segment.
Conclusion statement:
 We have shown that a rigid motion takes to, to, and to
, therefore triangle is congruent to triangle

Using the Triangle Congruence Theorems

More Proof Supports

Many proofs in Euclidean geometry that don't use transformations use congruent triangles: if you can find two triangles that you are SURE are congruent, you can prove that any corresponding parts of your triangles are congruent.

- 1. Can you find any triangles that are probably congruent? Suggestion: outline them in different colors or re-draw them separately on your paper.
- 2. If you can't find any triangles yet, is there a helpful auxiliary line you can draw?
 - a. A line of symmetry?
 - b. A segment connecting two points, such as the diagonal of a quadrilateral?
- 3. Label all of the things you know are congruent. This will help you decide how to prove two triangles are congruent.
 - a. Do you know all three pairs of corresponding sides are congruent? Use SSS Congruence!
 - b. Do you know two pairs of corresponding angles are congruent? Look to see if you can show the sides between the corresponding angles are congruent to use ASA Congruence!
 - c. Do you know two pairs of corresponding sides are congruent? Look to see if you can show the angles between the corresponding sides are congruent to use SAS!
- 4. Seems like there's not enough information? Here are some things to check:
 - a. Do the triangles share a side or an angle? Sides and angles are congruent to themselves!
 - b. Are any of the sides radii of the same circle? All of the radii in the same circle are congruent.
 - c. Are there parallel lines? Look for angles that must be congruent when formed by parallel lines, such as alternate interior angles.
 - d. Are there vertical angles?
 - e. Is there a quadrilateral with special properties?

You can use this template if you want:
Goal: Prove is congruent to
I'm going to do this by proving Triangle is congruent to triangle by Congruence Theorem.
Statement 1:
Reason 1:
Statement 2:
Reason 2:
Statement 3:
Reason 3:
Therefore, Triangle is congruent to triangle by Congruence Theorem.
Since and are corresponding parts of congruent triangles, and must be congruent.

Not Too Close, Not Too Far (Part 1)

Narrator: Diego, Jada, and Noah were given the following task: "Prove that if a point *C* is the same distance from *A* as it is from *B*, then *C* must be on the perpendicular bisector of *AB*." At first they were really stuck.

Noah: How do you prove a point is on a line?

Narrator: Their teacher gave them the hint, "Another way to think about it is to draw a line that you know *C* is on, and prove that line has to be the perpendicular bisector." They each drew a line and thought about their pictures.

Diego: I drew a line through *C* that was perpendicular to *AB* and through the midpoint of *AB*. That line is the perpendicular bisector of *AB* and *C* is on it, so that proves *C* is on the perpendicular bisector."

Jada: I thought the line through *C* would probably go through the midpoint of *AB* so I drew that and labeled the midpoint *D*.

Triangle *ACB* is isosceles, so angles *A* and *B* are congruent, and *AC* and *BC* are congruent.

And *AD* and *DB* are congruent because *D* is a midpoint. That made two congruent triangles by the Side-Angle-Side Triangle Congruence

Theorem. So I know angle *ADC* and angle *BDC* are congruent, but I still don't know if *DC* is the perpendicular bisector of *AB*.

Noah: In the Isosceles Triangle Theorem proof, Mai and Kiran drew an angle bisector in their isosceles triangle, so I'll try that. I'll draw the angle bisector of angle *ACB*. The point where the angle bisector hits *AB* will be *D*. So triangles *ACD* and *BCD* are congruent, which means *AD* and *BD* are congruent, so *D* is a midpoint and *CD* is the perpendicular bisector.

Not Too Close, Not Too Far (Part 1)

Narrator: Diego, Jada, and Noah were given the following task: "Prove that if a point *C* is the same distance from *A* as it is from *B*, then *C* must be on the perpendicular bisector of *AB*." At first they were really stuck.

Noah: How do you prove a point is on a line?

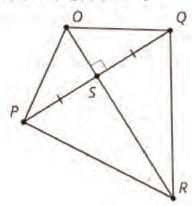
Narrator: Their teacher gave them the hint, "Another way to think about it is to draw a line that you know *C* is on, and prove that line has to be the perpendicular bisector." They each drew a line and thought about their pictures.

Diego: I drew a line through *C* that was perpendicular to *AB* and through the midpoint of *AB*. That line is the perpendicular bisector of *AB* and *C* is on it, so that proves *C* is on the perpendicular bisector."

Jada: I thought the line through *C* would probably go through the midpoint of *AB* so I drew that and labeled the midpoint *D*.

Triangle *ACB* is isosceles, so angles *A* and *B* are congruent, and *AC* and *BC* are congruent.

And *AD* and *DB* are congruent because *D* is a midpoint. That made two congruent triangles by the Side-Angle-Side Triangle Congruence
Theorem. So I know angle *ADC* and angle *BDC* are congruent, but I still don't know if *DC* is the perpendicular bisector of *AB*.


Noah: In the Isosceles Triangle Theorem proof, Mai and Kiran drew an angle bisector in their isosceles triangle, so I'll try that. I'll draw the angle bisector of angle *ACB*. The point where the angle bisector hits *AB* will be *D*. So triangles *ACD* and *BCD* are congruent, which means *AD* and *BD* are congruent, so *D* is a midpoint and *CD* is the perpendicular bisector.

Proving the Triangle Congruence Theorems Sentence Frames for Proofs

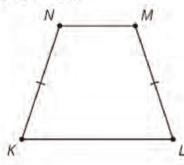
Transformations:
• Translate from to
Rotate using as the center by angle
 Rotate using as the center so that coincides with
Reflect across
Reflect across the perpendicular bisector of
 Segments and are the same length so they are congruent. Therefore, there is a
rigid motion that takes to Apply that rigid motion to
Justifications:
 We know the image of is congruent to because rigid motions preserve measure.
 Points and coincide after translating because we defined our translation that way!
Since points and are the same distance along the same ray from they
have to be in the same place.
 Rays and coincide after rotating because we defined our rotation that way!
 The image of must be on ray since both and are on the same side of and make the same angle with it at
Points and coincide because they are both at the intersection of the same
lines, and 2 distinct lines can only intersect in 1 place.
• is the perpendicular bisector of the segment connecting and, because
the perpendicular bisector is determined by 2 points that are both equidistant from the
endpoints of a segment.
Conclusion statement:
 We have shown that a rigid motion takes to, to, and to
, therefore triangle is congruent to triangle

More Practice Seeing Shortcuts

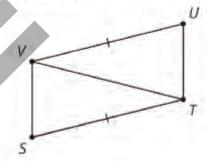
 $\frac{\text{Figure }POQR}{OR} \perp \overline{PQ}, \overline{PS} \cong \overline{QS}$

More Practice Seeing Shortcuts

Figure FJHW


 $\overline{JW} \perp \overline{FH}, \overline{FY} \cong \overline{HY}, \overline{JY} \cong \overline{WY}$

More Practice Seeing Shortcuts


Figure KLMN

 $\overline{KN} \cong \overline{LM}$

More Practice Seeing Shortcuts

Figure STUV $\overline{TS} \cong \overline{VU}$

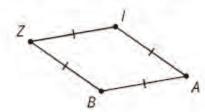

More Practice Seeing Shortcuts

Figure \overrightarrow{ABCD} $\overrightarrow{DC} \parallel \overrightarrow{BA}, \overrightarrow{AD} \parallel \overrightarrow{CB}$

More Practice Seeing Shortcuts

Figure ZIAB $\overline{ZI} \cong \overline{IA} \cong \overline{AB} \cong \overline{BZ}$

Ambiguously Ambiguous?

Group 1

Triangle ABC: angle $A = 90^{\circ}$, AB = 16 cm, BC = 20 cm

Triangle DEF: angle $D=30^{\circ}$, DE=15 cm, EF=8 cm

Triangle GHI: angle $G = 50^{\circ}$, GH = 11 cm, HI = 13 cm

Ambiguously Ambiguous?

Group 2

Triangle JKL: angle $J=90^{\circ}$, JK=24 cm, KL=26 cm

Triangle MNO: angle $M=60^{\circ},\ MN=17\ \mathrm{cm},\ NO=15\ \mathrm{cm}$

Triangle PQR: angle $P=40^{\circ}$, PQ=15 cm, QR=20 cm

Ambiguously Ambiguous?

Group 3

Triangle STU; angle $S=50^{\circ}$, ST=13 cm, $TU\neq11$ cm

Triangle VWX: angle $V=45^{\circ}$, VW=18 cm, WX=14 cm

Triangle ABC: angle $A = 90^{\circ}$, AB = 16 cm, BC = 20 cm

Ambiguously Ambiguous?

Group 4

Triangle DEF: angle $D = 30^{\circ}$, DE = 15 cm, EF = 8 cm

Triangle GHI: angle $G=50^{\circ},\ GH=11\ \mathrm{cm},\ HI=13\ \mathrm{cm}$

Triangle JKL: angle $J=90^{\circ}$, JK=24 cm, KL=26 cm

Ambiguously Ambiguous?

Group 5

Triangle MNO: angle $M=60^{\circ},\ MN=17\ \mathrm{cm},\ NO=15\ \mathrm{cm}$

Triangle PQR: angle $P=40^{\circ}$, PQ=15 cm, QR=20 cm

Triangle STU: angle $S=50^{\circ}$, ST=13 cm, TU=11 cm

Ambiguously Ambiguous?

Group 6

Triangle VWX: angle $V=45^{\circ},\ VW=18\ \mathrm{cm},\ WX=14\ \mathrm{cm}$

Triangle ABC: angle $A=90^{\circ},\ AB=16$ cm, BC=20 cm

Triangle DEF: angle $D=30^{\circ},\ DE=15\ \mathrm{cm},\ EF=8\ \mathrm{cm}$

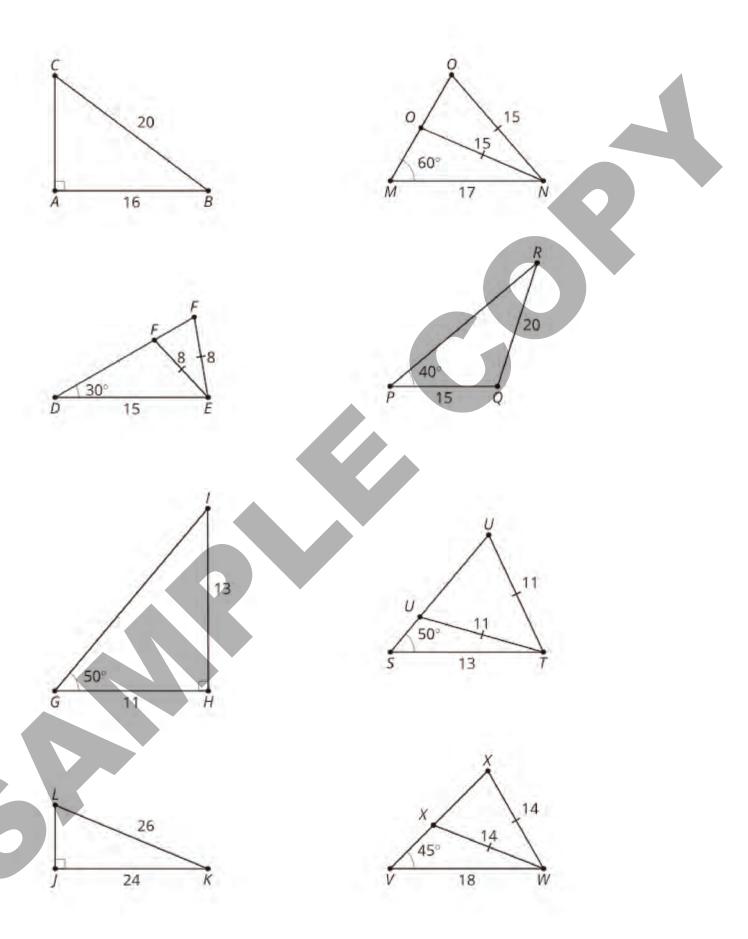
Ambiguously Ambiguous?

Group 7

Triangle GHI: angle $G = 50^{\circ}$, GH = 11 cm, HI = 13 cm

Triangle JKL: angle $J=90^{\circ}$, JK=24 cm, KL=26 cm

Triangle MNO: angle $M=60^{\circ}$, MN=17 cm, NO=15 cm

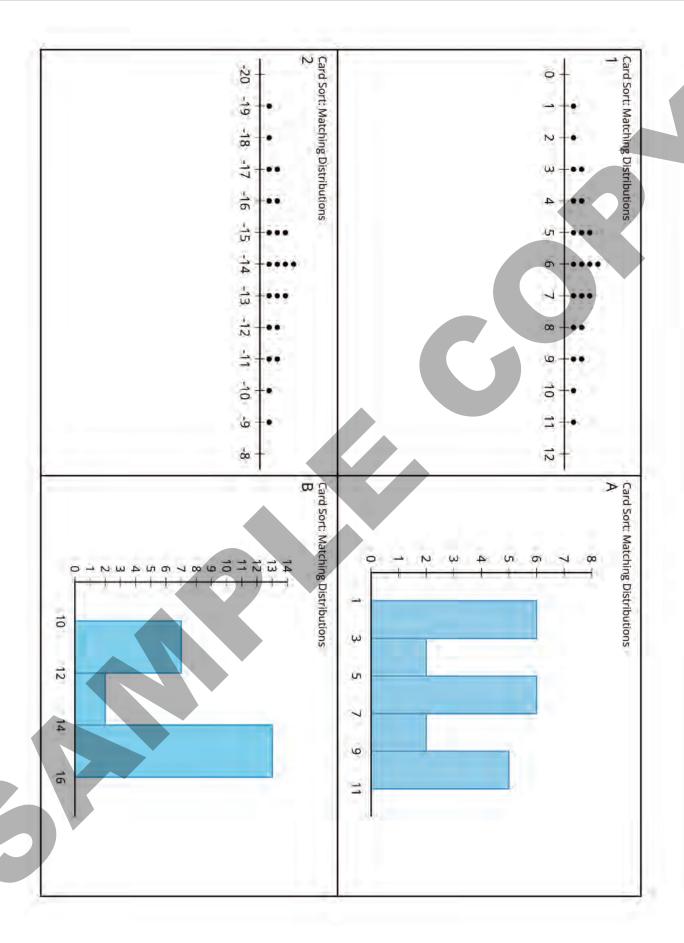

Ambiguously Ambiguous?

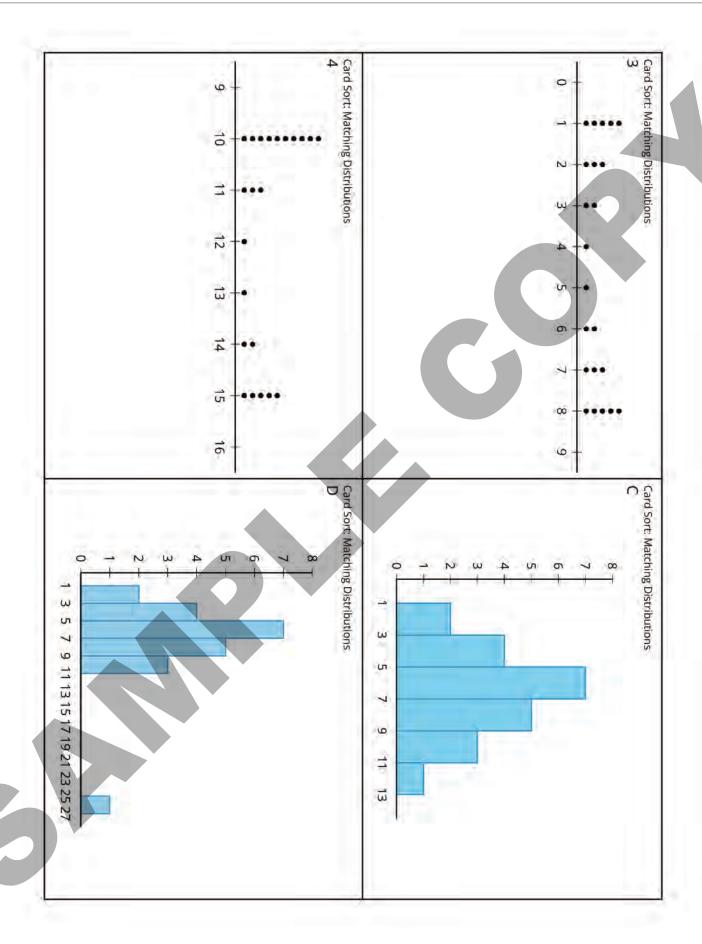
Group 8

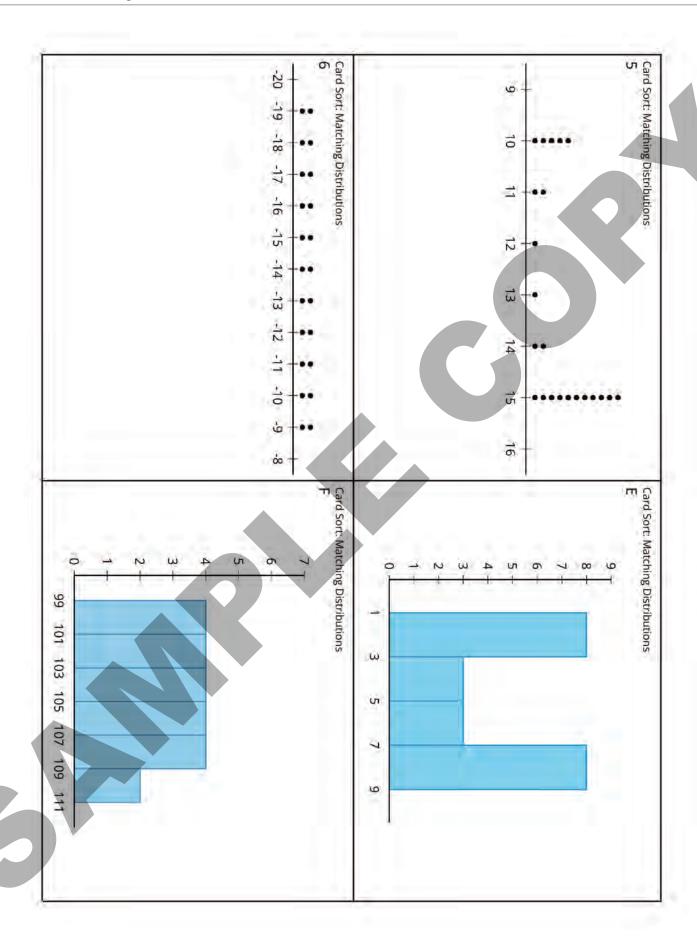
Triangle PQR: angle $P=40^{\circ}$, PQ=15 cm, QR=20 cm

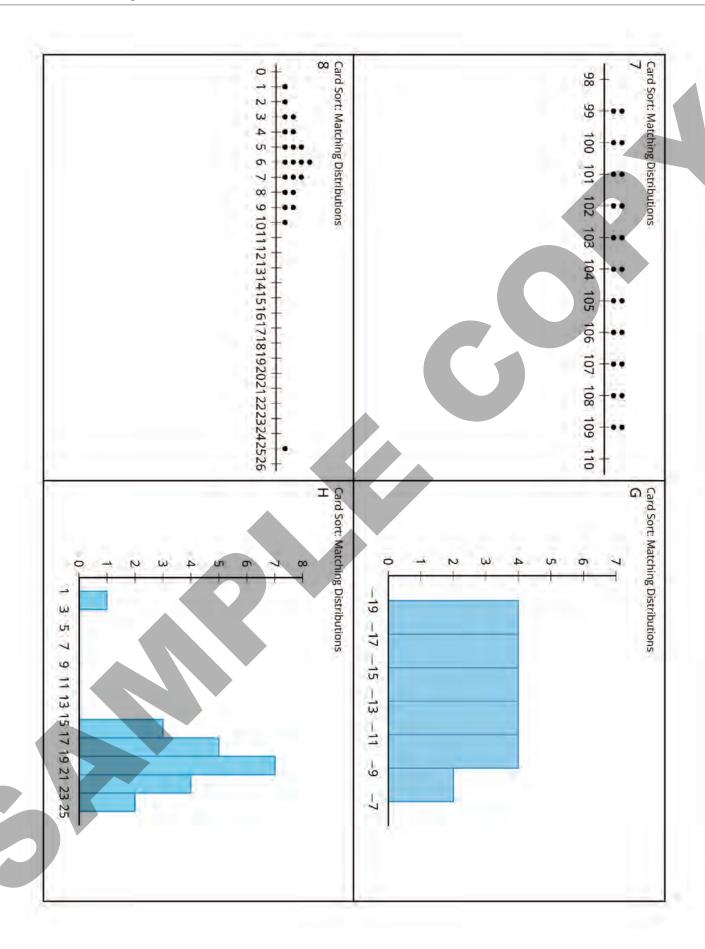
Triangle STU: angle $S=50^{\circ},\ ST=13\ \mathrm{cm},\ TU=11\ \mathrm{cm}$

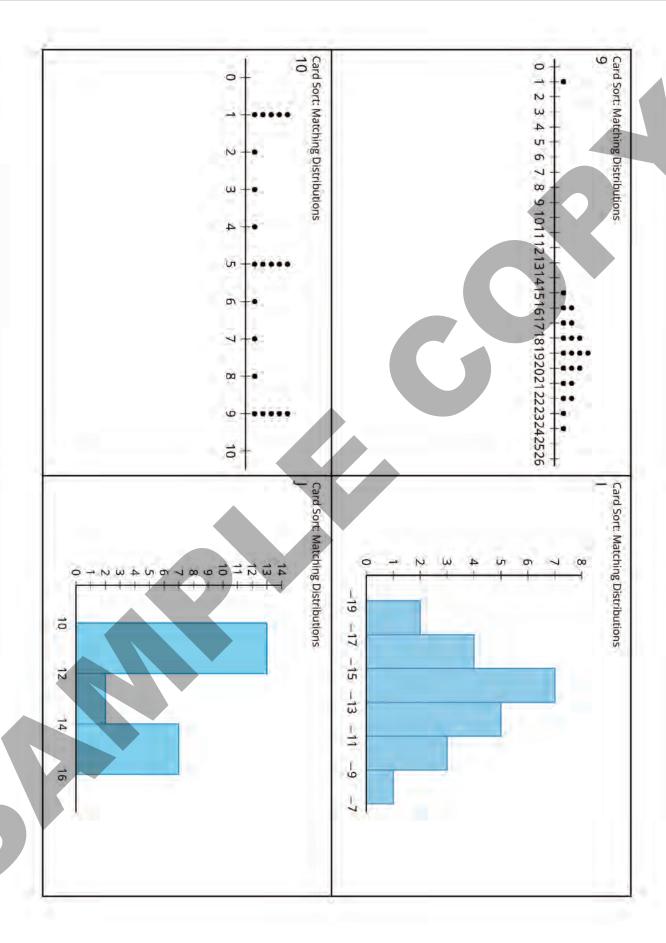
Triangle VWX; angle $V=45^{\circ}$, $VW=18~\mathrm{cm}$, $WX=14~\mathrm{cm}$



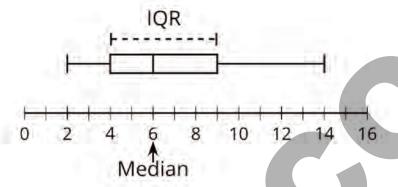



3


Teacher Resource Copy Masters


LESSON BLACKLINE MASTERS

This graphic organizer might help you determine which data values are useful for determining each of the statistics.

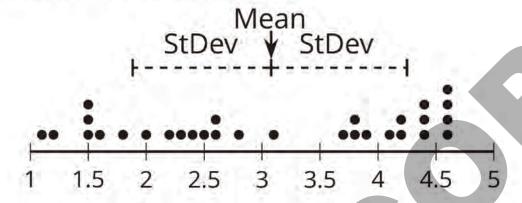

data values from least to greatest			
median (the middle value or the average of the two middle values)			
values of the first half of the data	W)		
Q1 (the median of the first half of the data)			
values of the second half of the data			
Q3 (the median of the second half of the data)			

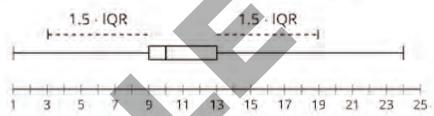
This graphic organizer might help you determine which data values are useful for determining each of the statistics.

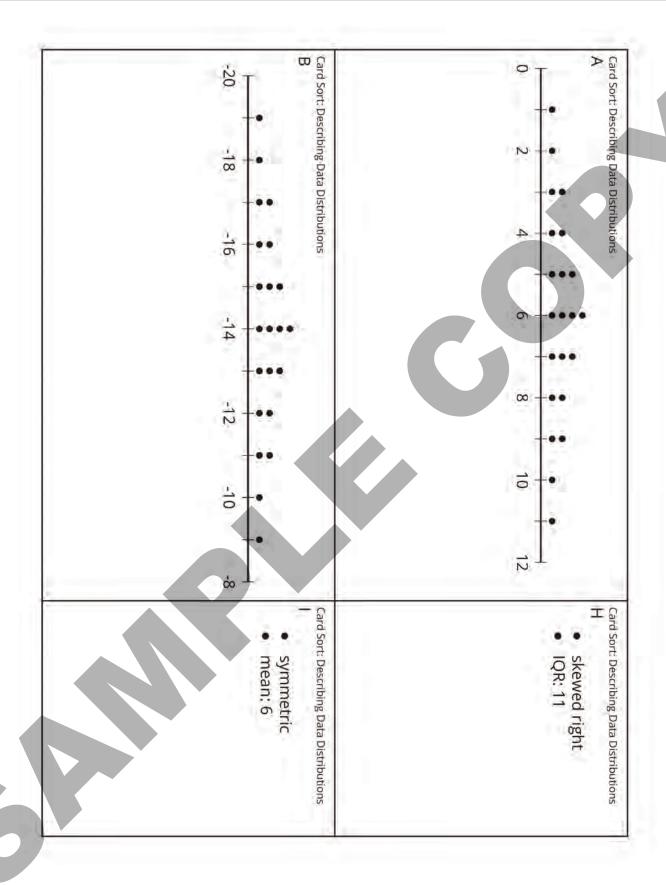

data values from least to greatest		
median (the middle value or the average of the two middle values)		
values of the first half of the data		
Q1 (the median of the first half of the data)		
values of the second half of the data		
Q3 (the median of the second half of the data)		

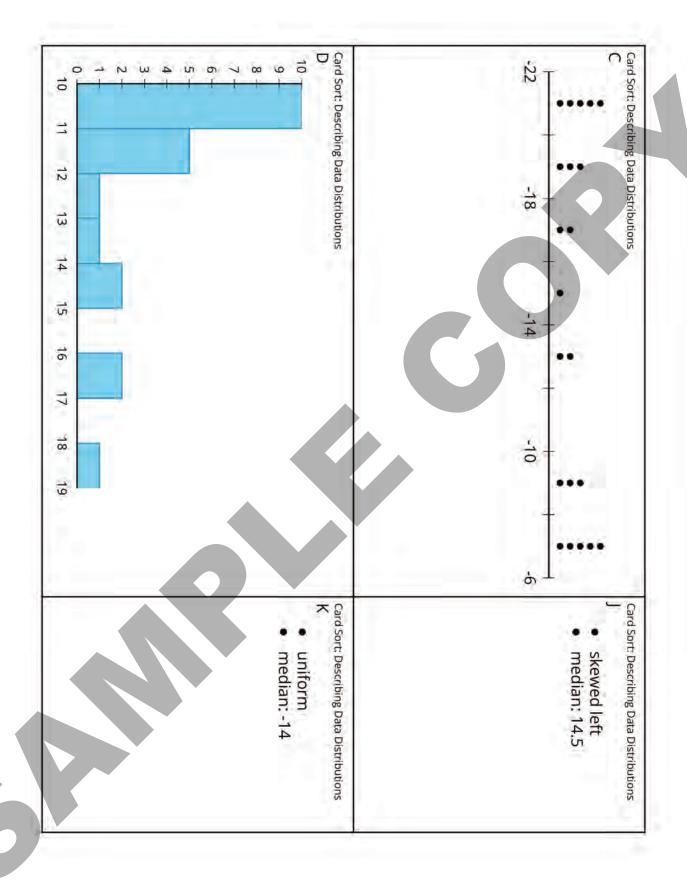
Algebra 1 Unit 1 Useful Terms and Displays

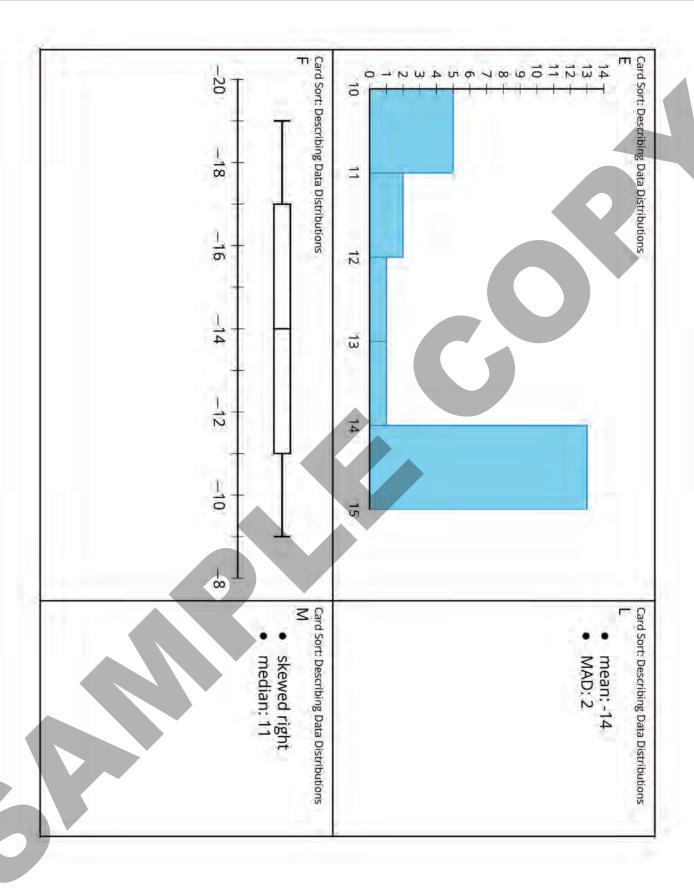
Median: A measure of center that divides the data so that the number of values less than or equal to the median is the same as the number of values that are greater than or equal to the median. Medians are easiest to see in a box plot.

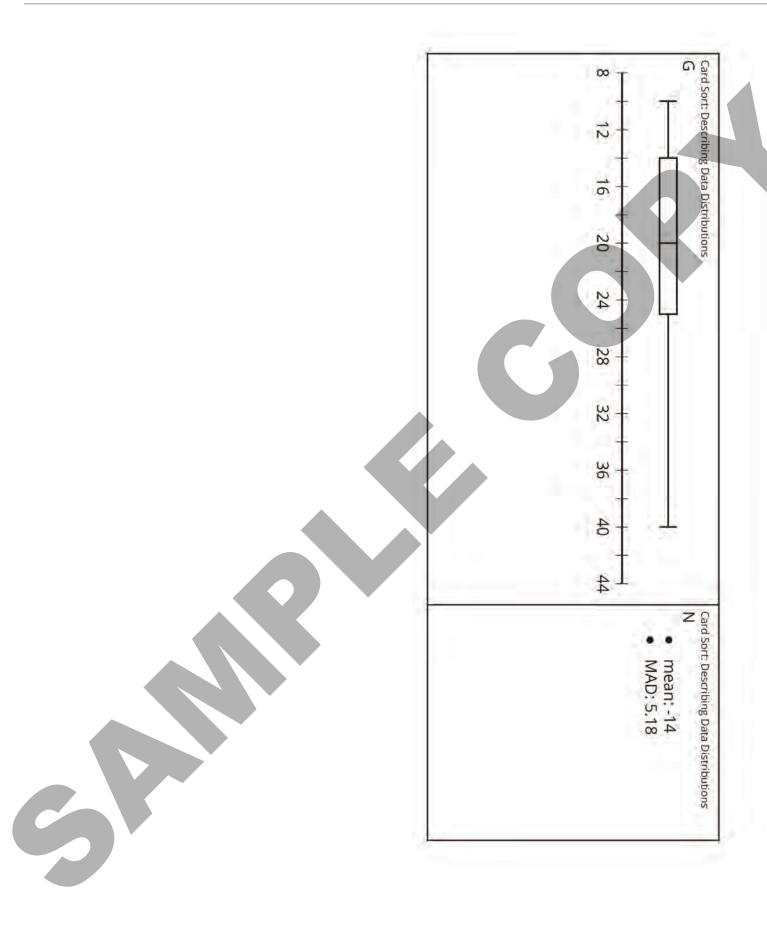

Mean: Also called the average, it is the value you get by adding up all of the values in the set and dividing by the number of values in the set.

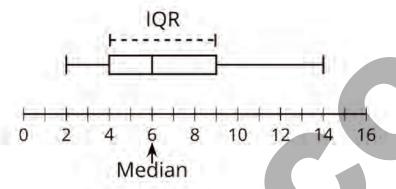

Interquartile range (IQR): A measure of variability determined by the range of values for the middle half of the data. Often used with median, this value can be determined by subtracting Q1 - Q3. In the box plot shown here, the IQR is 5 (because 9 - 4 = 5).


Mean absolute deviation (MAD): A measure of variability determined by the mean of the distances of the data points from the mean of the distribution. Often used with mean, this value is related to how widely the data are spread.


Standard deviation: A measure of the variability, or spread, of a distribution, calculated by a method similar to the method for calculating the MAD (mean absolute deviation). The exact method is studied in more advanced courses.

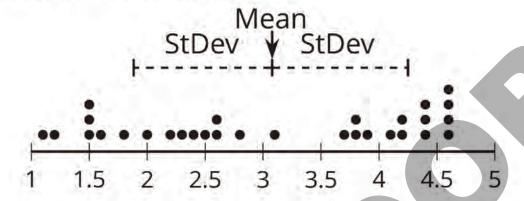


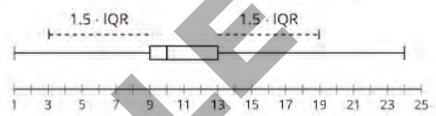

Outlier: A data value that is unusual in that it differs quite a bit from the other values in the data set. In the box plot shown, the minimum, 1, and the maximum, 24, are both outliers because they are more than 1.5 times the interquartile range away from the nearest quartile.



Algebra 1 Unit 1 Useful Terms and Displays

Median: A measure of center that divides the data so that the number of values less than or equal to the median is the same as the number of values that are greater than or equal to the median. Medians are easiest to see in a box plot.

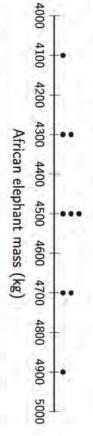

Mean: Also called the average, it is the value you get by adding up all of the values in the set and dividing by the number of values in the set.


Interquartile range (IQR): A measure of variability determined by the range of values for the middle half of the data. Often used with median, this value can be determined by subtracting Q1 - Q3. In the box plot shown here, the IQR is 5 (because 9 - 4 = 5).

Mean absolute deviation (MAD): A measure of variability determined by the mean of the distances of the data points from the mean of the distribution. Often used with mean, this value is related to how widely the data are spread.

Standard deviation: A measure of the variability, or spread, of a distribution, calculated by a method similar to the method for calculating the MAD (mean absolute deviation). The exact method is studied in more advanced courses.

Outlier: A data value that is unusual in that it differs quite a bit from the other values in the data set. In the box plot shown, the minimum, 1, and the maximum, 24, are both outliers because they are more than 1.5 times the interquartile range away from the nearest quartile.


Info Gap: African and Asian Elephants Problem Card 1

different locations are recorded. Masses for two different populations of African elephants at

- 0 Which of the populations has a heavier typical mass? Explain your reasoning.
- Which of the populations has greater variability in masses? Explain your reasoning.

Info Gap: African and Asian Elephants Problem Card 2

to the masses for a sample of Asian elephants. Scientists compared masses for a sample of African elephants

and the data have been lost for the Asian elephants. Draw a possible dot plot for the Asian elephants that fits the comparison, Although the comparative analysis can be found, the dot plot

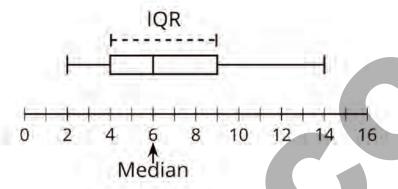
> Data Card 1 Info Gap: African and Asian Elephants

Population A

- Mean: 4,872 kilograms
- Median: 4,948 kilograms
- Standard deviation: 550 kilograms
- Interquartile range: 972 kilograms
- The distribution is symmetric
- Mean: 4,743 kilograms

- The distribution is symmetric

Population B

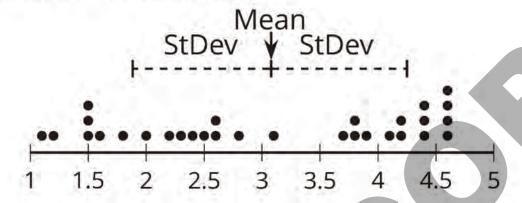

- Median: 4,761 kilograms
- Standard deviation: 626 kilograms
- Interquartile range: 904 kilograms

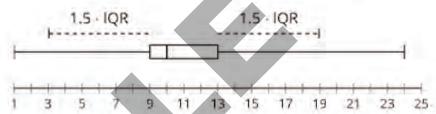
Data Card 2 Info Gap: African and Asian Elephants


- kilograms. The mean mass for the African elephants is 4,500
- elephants is 245 kilograms. The standard deviation for the mass of African
- elephants. kilograms less than the mean mass for the African The mean mass for the Asian elephants is 2,000
- than the standard deviation for the African elephants. The standard deviation for the Asian elephants is less
- elephants is the same. The shape of the distributions for both types of
- The samples each included 9 individual elephants.

Algebra 1 Unit 1 Useful Terms and Displays

Median: A measure of center that divides the data so that the number of values less than or equal to the median is the same as the number of values that are greater than or equal to the median. Medians are easiest to see in a box plot.


Mean: Also called the average, it is the value you get by adding up all of the values in the set and dividing by the number of values in the set.


Interquartile range (IQR): A measure of variability determined by the range of values for the middle half of the data. Often used with median, this value can be determined by subtracting Q1 - Q3. In the box plot shown here, the IQR is 5 (because 9 - 4 = 5).

Mean absolute deviation (MAD): A measure of variability determined by the mean of the distances of the data points from the mean of the distribution. Often used with mean, this value is related to how widely the data are spread.

Standard deviation: A measure of the variability, or spread, of a distribution, calculated by a method similar to the method for calculating the MAD (mean absolute deviation). The exact method is studied in more advanced courses.

Outlier: A data value that is unusual in that it differs quite a bit from the other values in the data set. In the box plot shown, the minimum, 1, and the maximum, 24, are both outliers because they are more than 1.5 times the interquartile range away from the nearest quartile.

handedness	height (cm) f	oot length (cm)	arm span (cm)	handedness	height (cm) for	ot length (cm)	arm span (cm)
Left-Handed	173	25	170	Right-Handed	172.2	26.6	172.2
Left-Handed	134	65	136	Right-Handed	180	27	168
Left-Handed	165	21	168	Right-Handed	184	28	183
Left-Handed	180	27	181	Right-Handed	165	26	150
Left-Handed	156	23.5	158	Right-Handed	171	26	175
Left-Handed	179	25	179	Right-Handed	23	22	150
Left-Handed	175	25	170	Right-Handed	75	32	92
Left-Handed	189	27	192	Right-Handed	179	29	171
Left-Handed	165	21.3	176.8	Right-Handed	174	28	194
Left-Handed	157.5	21.5	162.6	Right-Handed	154	22	149
Left-Handed	152	21	140	Right-Handed	165.1	28	171
Left-Handed	162	24	177	Right-Handed	61	12	30
Left-Handed	61	24	147	Right-Handed	177	25.4	180
Left-Handed	173	25.4	162.5	Right-Handed	167	26	171
Left-Handed	188	28	191	Right-Handed	172	27	178
Left-Handed	164	25.4	96	Right-Handed	163	27	165
Left-Handed	178	23	183	Right-Handed	162	22	154
Left-Handed	173.6	24	179.4	Right-Handed	170	25.7	67
Left-Handed	173	24	184	Right-Handed	184	26	176
Left-Handed	157	24	37	Right-Handed	166	24	158
Left-Handed	181	25	170	Right-Handed	171	27	184
Left-Handed	198	29	183	Right-Handed	152	24	159
Left-Handed	152.4	21.3	133	Right-Handed	60	25.5	143
Left-Handed	175	19	172	Right-Handed	177	27.5	178
Left-Handed	160	25	120	Right-Handed	174	45	87.5
				Right-Handed	150	21	152
				Right-Handed	157	21.5	161
				Right-Handed	183	28	75
				Right-Handed	152.8	22	152.8
				Right-Handed	160	23	163
				Right-Handed	171	24	170
				Right-Handed	153.5	22	154
				Right-Handed	176	25	178
				Right-Handed	170	23	162
				Right-Handed	165	25	171
				Right-Handed	162.5	22.8	168.9
				Right-Handed	183	26	185
				Right-Handed	182.8	27.94	187.9
				Right-Handed	188	28	189
				Right-Handed	159	25	162
				Right-Handed	180	26	165
				Right-Handed	180	27	200
				Right-Handed	10	1	3
				Right-Handed	155	23	145
				Right-Handed	153	22	154
				Right-Handed	164	22	62.5
				Right-Handed	74	24	181
				Right-Handed	156.5	22.5	65