OpenSciEd Middle School science program addresses all middle school NGSS standards. This comprehensive science curriculum empowers students to question, design, investigate, and solve the world around them.
- Phenomenon Based - Centered around exploring phenomena or solving problems
- Driven by Student Questions - Storyline based on students’ questions and ideas
- Grounded in Evidence - Incremental building and revision of ideas based on evidence
- Collaborative - class and teacher figure out ideas together
- Equitable - Builds a classroom culture that values ideas and learning of all
The OpenSciEd model uses a storyline approach, introducing phenomena that anchors storylines developing disciplinary core ideas, concepts, and science/engineering practices. Students are encouraged to dive deep into key points and solve problems through five activities. Students kick off a unit of study, investigate questions, piece together the puzzle in investigations, and problematize the next set of questions to investigate.
Unit 7.2: How can we use chemical reactions to design a solution to a problem?
In this 21-day unit, students are introduced to the anchoring phenomenon—a flameless heater in a Meal, Ready-to-Eat (MRE) that provides hot food to people by just adding water. In the first lesson set, students explore the inside of an MRE flameless heater, then do investigations to collect evidence to support the idea that this heater and another type of flameless heater (a single-use hand warmer) are undergoing chemical reactions as they get warm. Students have an opportunity to reflect on the engineering design process, defining stakeholders, and refining the criteria and constraints for the design solution.
In the second lesson set, students develop their design solutions by investigating how much food and reactants they should include in their homemade heater designs and go through a series of iterative testing and redesigning. This iterative design cycle includes peer feedback, consideration of design modification consequences, and analysis of impacts on stakeholders. Finally, students optimize their designs and have another team test their homemade heater instructions.
Lesson 1: How can we heat up food when we don’t have our typical methods available?
Lesson 2: How do heaters get warm without a flame?
Lesson 3: What other chemical reactions could we use to heat up food?
Lesson 4: How much of each reactant should we include in our homemade flameless heater?
Lesson 5: How can we refine our criteria and constraints?
Lesson 6: How can we redesign our homemade flameless heater?
Lesson 7: How did our design compare to others in the class?
Lesson 8: What effects might result from our design changes?
Lesson 9: What is our optimal design for a homemade flameless heater?
Lesson 10: How can we decide between competing designs?
NATIONAL CENTER FOR
OpenSciEd® was launched to improve the supply of and address the demand for high-quality, open-source, full course science instructional materials. The goals of OpenSciEd are to ensure any science teacher, anywhere, can access and download freely available, high quality, locally adaptable materials. Though the goal of providing full course materials is still a couple of years away, OpenSciEd is releasing six-week units of instruction as they are completed and externally evaluated as quality by Achieve’s Science Peer Review Panel.
OpenSciEd classroom materials are an open education resource and therefore free to download, copy, use, and/or modify. You can download the instructional materials free of charge at Access Materials page on the OpenSciEd website.
In an effort to lower barriers for all educators to use OpenSciEd, Kendall Hunt and OpenSciEd have partnered to sell high quality printed books, professional learning and lab kits.